

Slitta compatta a doppia guida Serie HLQ (pattini di guida)

Serie di prodotto

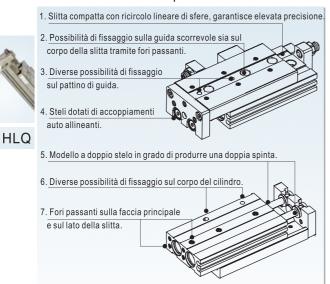
Installazione ed utilizzo (universale)

- 1. Eliminare ogni tipo di impurità dalle tubature prima di collegarle ai cilindri;
- 2.L'aria deve essere filtrata a $40\mu m$ prima di essere immessa nel sistema;
- 3.In ambienti con basse temperature, adottare gli accorgimenti necessari per prevenire il congelamento;
- 4.Se il cilindro resta inoperativo e stoccato per un lungo periodo, assicurarsi che il prodotto sia mantenuto nella confezione originale.

Uscita teorica

Alesaggio Diametro stelo		Posizione d'esercizio		Superficie di		Pressione di esercizio(MPa)						
(mm)	(mm)	Posizione d es	pressione d'esercizio pressione		0.2	0.3	0.4	0.5	0.6	0.7		
6		Donnie offette	Out	42	8	13	17	21	25	29		
О	3	Doppio effetto	In	57	11	17	23	29	34	40		
0	4	Donnie offette	Out	75	15	23	30	38	45	53		
8	4	Doppio effetto	In	101	20	30	40	51	61	71		
10	e	Doppio effetto	Out	170	34	51	68	85	102	119		
12	6		In	226	45	68	90	113	136	158		
1.0	0	Dannia offatta	Out	302	60	91	121	151	181	211		
16	8	Doppio effetto	In	402	80	121	161	201	241	281		
20	10	D:ff-44-	Out	471	94	141	188	236	283	330		
20	10	Doppio effetto	In	628	126	188	251	314	377	440		
0.5	40	D	Out	756	151	227	302	378	454	529		
25	12	Doppio effetto	In	982	186	295	393	491	589	687		

HLQ


Serie HLQ

Simbolo

Caratteristiche del prodotto

Specifiche

Alesaggio(mm)	6	8	12	16	20	25
Landa and Market	10	10	7	9	9	12
Larghezza guida (mm)	(guida	singola)		(guida	doppia)	
Funzionamento			Doppio	effetto		
Fluido			Aria (filtra	ta a 40µm)		
Pressione di esercizio		0.15~0.	7MPa(22~	100psi)(1.5	~7.0bar)	
Massima pressione di esercizio		1.	05MPa(150	Opsi)(10.5b	ar)	
Temperatura di esercizio °C			-20	~70		
Velocità di esercizio mm/s				-500		
Tolleranza sulla corsa	+1.0 0					
Ammortizzo	Ammo	mmortizzo interno su entrambi i lati, Ammortizzo idraulico				
Sensore fine corsa		D	S1-H□N、	DS1-H□P	1	
Filettatura		M5	×0.8		1.	/8"

① Per i sensori fine corsa fare riferimento alle pagine 351~372.

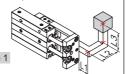
Corsa

Alesaggio(mm)	Corse standard(mm)	Corsa massima (mm)
6	10 20 30 40 50	50
8	10 20 30 40 50 75	75
12	10 20 30 40 50 75 100	100
16	10 20 30 40 50 75 100 125	125
20	10 20 30 40 50 75 100 125 150	150
25	10 20 30 40 50 75 100 125 150	150

Note: per corse differenti da quelle indicate, si prega di contattare l'azienda.

Codice di Ordinazione

Note ①: le slitte Ф6 non sono disponibili con ammortizzo idraulico (modelli B, BS, BF non disponibili). ②: Se la filettatura è di tipo M5, questa posizione del codice è vuota.



Serie HLQ

Selezione dei prodotti

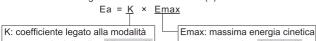
Per selezionare il prodotto adatto all'applicazione, fare riferimento ai seguenti passaggi:


- 1. Caratteristiche della slitta prescelta (alesaggio, corsa)
- 2. Tipo di ammortizzo (regolabile o idraulico)
- 3. Modalità di fissaggio (sul corpo o sui lati)
- 4. Movimento della slitta (orizzontale o verticale)
- 5. Velocità di esercizio della slitta Va (mm/s)
- 6. Posizione e baricentro del carico W (N) Disegno 1
- 7. Distanza L1, L2, L3 (mm) tra il baricentro del carico ed i punti di fissaggio

Spiegazione:

L1 è la distanza tra il baricentro del carico e l'estremità della slitta. Se il carico è posto sopra la slitta, L1 avrà valore negativo.

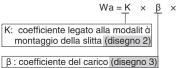
Disegno 1: Posizione e baricentro del carico

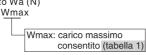

3. Controllo dell'energia cinetica

Passaggi base

1. Calcolo dell'energia cinetica effettiva E (J) del carico

$$E = \frac{1}{2} \times \frac{W}{g} \times (\frac{1.4 \times Va}{1000})^2$$


2. Calcolo dell'energia cinetica consentita Ea(J)

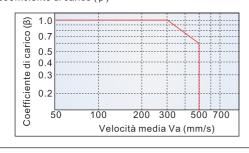


montaggio della slitta (disegno 2) 3. Il risultato del calcolo deve rispettare il parametro

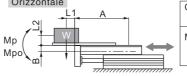
Passaggi base

1. Calcolo del momento di forza consentito Wa (N)

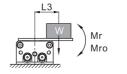
2. Il risultato del calcolo deve rispettare il parametro


W≤Wa

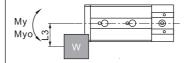
Disegno 2: coefficiente legato alla modalità montaggio della slitta (K)



Disegno 3: coefficiente di carico (β)

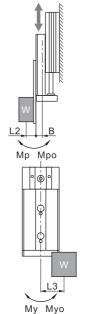


Passaggi base


1. Calcolo del momento torcente Mp, Mpo, My, Myo, Mr, Mro (Nm)

Corsa: $Mp\!=\!W\!\times\!(L1\!+\!A)/1000$ Momento statico: $Mpo = \frac{W \times (L1+A)}{1000} + \frac{W \times a \times (L2+B)}{1000 \times g}$

Corsa: $Mr=W \times L3/1000$ Momento statico: $Mro = (W \times a \times L3)/1000g$


Momento statico: $Myo = (W \times a \times L3)/1000g$

2. Risultato del calcolo

Corsa:	$\frac{Mp}{Mp_{max}}$ +	$\frac{My}{My_{\text{max}}}$	+	$\frac{Mr}{Mr_{\text{max}}}$	≤1
Momento statico:	$\frac{Mpo}{Mpo_{max}}$ +	$\frac{\text{Myo}}{\text{Myo}_{\text{max}}}$	+	$\frac{\text{Mro}}{\text{Mro}_{\text{max}}}$	≤1

Verticale

1. Calcolo del momento torcente Mp, Mpo, My, Myo, Mr, Mro (Nm)

 $Mp=W\times(L2+B)/1000$

Momento statico:

Mpo= $\frac{W \times (L2+B)}{1000} + \frac{W \times a \times (L2+B)}{1000 \times a}$

 $My=W \times L3/1000$ $Myo = \frac{W \times a \times L3}{1000g} + \frac{W \times L3}{1000}$

2. Risultato del calcolo

Corsa:	$\frac{Mp}{Mp_{max}} + \frac{My}{My_{max}} \le 1$
Momento statico:	$\frac{Mpo}{Mpo_{max}} + \frac{Myo}{Myo_{max}} \le 1$

Spiegazione

L1, L2, L3: Distanza tra il baricentro del carico ed i punti di fissaggio (valutare la situazione reale di utilizzo); A, B: valori di compensazione (tabella 2); Mp_{max}, My_{max}, Mr_{max}, Mpo_{max}, Myo_{max}, Mro_{max}: momento torcente

massimo consentito(tabella 2)

g: accelerazione gravitazionale (g=9.81m/s 2); a: accelerazione inerziale (deceleratore regolabile a=1600x(Va/1000) 2 , deceleratore idraulico a=400x(Va/1000) 2)

W: Massa del carico (valutare la situazione reale di utilizzo)

Serie HLQ

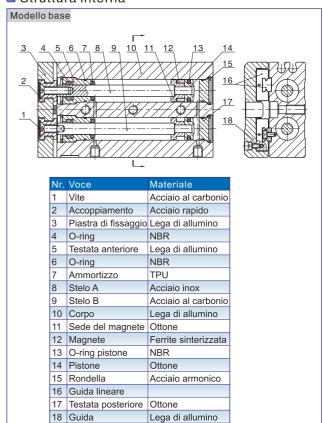
Note: codici, descrizioni ed unit à di misura

Codice	Descrizione	U.M.
A√ B	Valori di compensazione	mm
а	Accelerazione inerziale	_
E	Energia cinetica	J
Ea	Energia cinetica consentita	J
Emax	Massima energia cinetica consentita	J
g	Accelerazione gravitazionale g=9.81	m/s ²
g K	coefficiente legato alla modalità montaggio della slitta	-
L1、L2、L3	Distanza tra il baricentro del carico ed i punti di fissaggio della slitta	mm
Mp、My、Mr	Momento dinamico (torcente, oscillatorio, rotatorio)	Nm
$Mp_{max} My_{max} Mr_{max}$	Momento dinamico massimo (torcente, oscillatorio, rotatorio)	Nm
Mpo、Myo、Mro	Momento statico (torcente, oscillatorio, rotatorio)	Nm
Mpo _{max} Myo _{max} Mro _{max}	Momento statico massimo (torcente, oscillatorio, rotatorio)	Nm
Va	Velocità media	mm/s
W	Massa di carico	N
Wmax	Massima massa di carico consentita	N
β	coefficiente del momento di forza	-

Tabella 1: Massima energia cinetica consentita (Emax), Massima massa di carico consentita (Wmax)

Modello	Massi	ma energia cinetica cor	nsentita Emax(J)	Massima massa di carico
Wodello	Modello base	Con ammortizzo regolabile	Con ammortizzo idraulico	consentita Wmax(N)
HLQ6	0.01	0.01	_	4
HLQ8	0.024	0.024	0.048	8
HLQ12	0.05	0.05	0.1	15
HLQ16	0.1	0.1	0.2	30
HLQ20	0.13	0.13	0.26	40
HLQ25	0.22	0.22	0.44	70

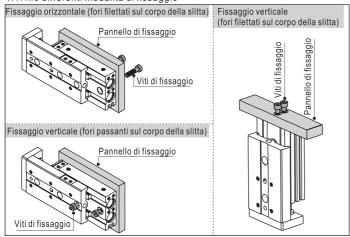
Tabella 2: Massimo momento dinamico consentito (Nm), valore di compensazione (mm)

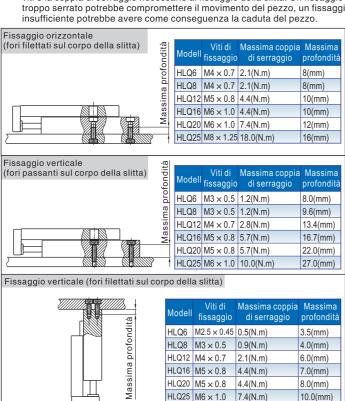

Tipo di movimento Valori di compensazione

HLQ

	Alcouggio	00134	Mpomax	Myo _{max}	Mro	Mp _{max}	My_{max}	Mr _{max}	A	В
		10	3.4	3.4	5.4	0.7	0.7	1.2	30	
		20	3.4	3.4	5.4	0.7	0.7	1.2	40	1
	c	30	3.4	3.4	5.4	0.7	0.7	1.2	50	7
	6	40	3.4	3.4	5.4	0.7	0.7	1.2	60	1'
		50	3.4	3.4	5.4	0.7	0.7	1.2	70	1
4		10	3.4	3.4	5.4	0.7	0.7	1.2	30	
		20	3.4	3.4	5.4	0.7	0.7	1.2	40	1
)		30	3.4	3.4	5.4	0.7	0.7	1.2	50	1
	8	40	3.4	3.4	5.4	0.7	0.7	1.2	60	7
		50	3.4	3.4	5.4	0.7	0.7	1.2	70	1
		75	3.4	3.4	5.4	0.7	0.7	1.2	95	
		10	5.5	5.5	8.5	1.5	1.5	2.5	32	
		20	5.5	5.5	8.5	1.5	1.5	2.5	44	
		30	5.5	5.5	8.5	1.5	1.5	2.5	54	
	12	40	5.5	5.5	8.5	1.5	1.5	2.5	62	44
		50	5.5	5.5	8.5	1.5	1.5	2.5	72	11
		75	36	36	58	13	13	21	115	
		100	37	37	58	13	13	21	142	
		10	15	15	23	3	3	5.4	49	
		20	15	15	23	3	3	5.4	49	
		30	15	15	23	3	3	5.4	59	
		40	15	15	23	3	3	5.4	69	
	16	50	15	15	23	3	3	5.4	79	12
		75	62	62	103	21	21	38	120	
		100	74	74	103	29	29	38	150	
		125	65	65	103	29	29	38	175	
		10	15	15	23	3	3	5.4	53	
		20	15	15	23	3	3	5.4	53	
		30	15	15	23	3	3	5.4	63	
		40	15	15	23	3	3	5.4	73	
		50	15	15	23	3	3	5.4	83	
	20	75	62	62	103	21	21	38	123	14
		100	74	74	103	29	29	38	157	
		125	65	65	103	29	29	38	178	
		150	99	99	103	37	37	38	210	
		10	25	25	36	6.3	6.3	10.7	60	
		20	25	25	36	6.3	6.3	10.7	60	
		30	25	25	36	6.3	6.3	10.7	70	
		40	25	25	36	6.3	6.3	10.7	80	
		50	25	25	36	6.3	6.3	10.7	90	l
	25	75	110	110	190	36	36	70	130	17
		100	165	165	190	68	68	70	168	
		125	195	195	190	77	77	70	205	1
		150	200	200	190	77	77	70	230	

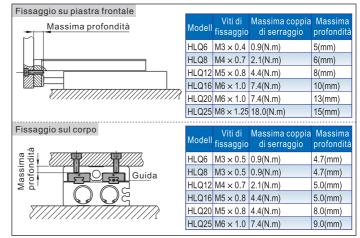
Struttura interna

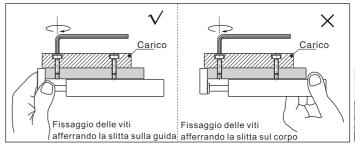



Serie HLQ

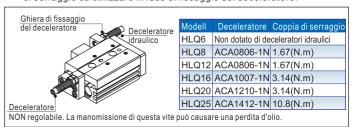
Installazione ed utilizzo

- 1. Fissaggio della slitta:
- 1.1. n.3 differenti modalità di fissaggio


1.2. Fare riferimento alla tabella sottostante per valutare la lunghezza delle viti e la coppia di serraggio necessarie al fissaggio della slitta. Un fissaggio troppo serrato potrebbe compromettere il movimento del pezzo, un fissaggio

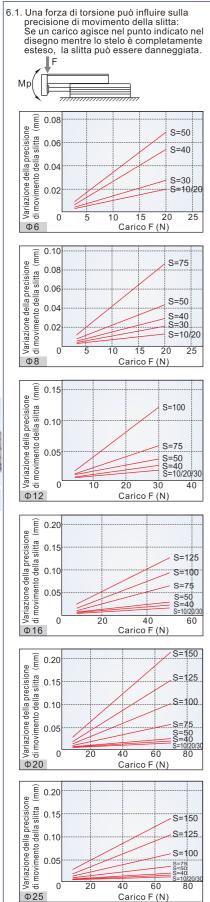

- 2. Fissaggio del carico:
- 2.1. Possibilità di montaggio sia sulla piastra frontale che sul corpo;

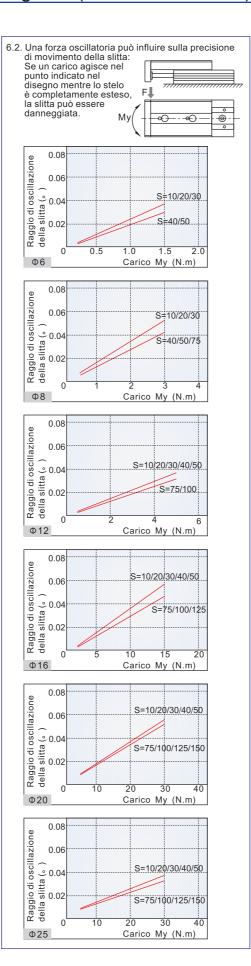
2.2. Fare riferimento alla tabella sottostante per valutare la lunghezza delle viti e la copia di serraggio necessarie al fissaggio del carico. In condizioni normali raccomandiamo una profondità non superiore a 0.5mm per garantire un fissaggio corretto e non interferire con le guide:

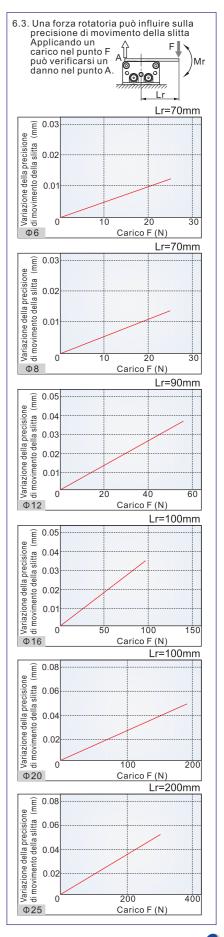


- 2.3. Se le guide lineari sono utilizzate come supporto di fissaggio, limitare la forza d'impatto ed il momento torcente a cui la slitta è sottoposta;
- 2.4. Nel fissare il carico alla guida, si raccomanda di tenere la guida con una mano. Procedendo al fissaggio sorreggendo la slitta dal corpo si rischia danneggiare lo scorrimento della guida

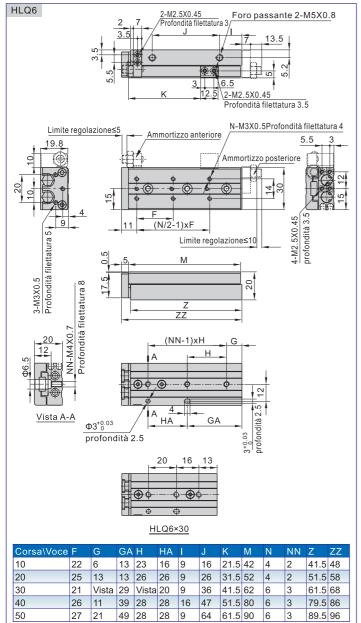
- 3. Deceleratore idraulico:
- 3.1. Sostituire i deceleratori non appena diminuisce la loro capacità di assorbire gli urti;
- 3.2. I deceleratori non sono regolabili. La manomissione delle viti poste sul fondo del deceleratore può causare una perdita d'olio.
- 3.3. Fare riferimento alla tabella sottostante per la scelta della corretta coppia di serraggio da utilizzare in fase di fissaggio del deceleratore.

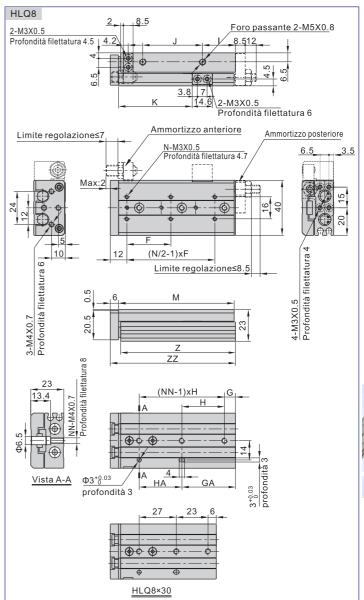

- 4. Installazione del sensore finecorsa
- 4.1. Le slitte HLQ sono corredate di magnete ed utilizzano sensori DS1-H e DS1-HL. Per i corretti codici d'ordine fare riferimento alla sezione apposita di questo catalogo
- 4.2. L'installazione particolarmente ravvicinata di due cilindri può causare interferenza e malfunzionamento dei sensori fine corsa. Tenere in considerazione il campo di azione
- del magnete per determinare la distanza minima di installazione dei cilindri 5. È indispensabile l'utilizzo di regolatore di flusso. La massima velocità consentita è
- 6. Porre attenzione alla reale situazione di utilizzo per valutare correttamente carichi
- e momento dinamico.



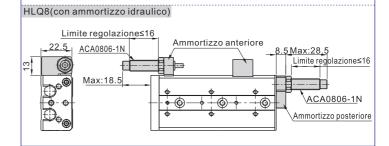


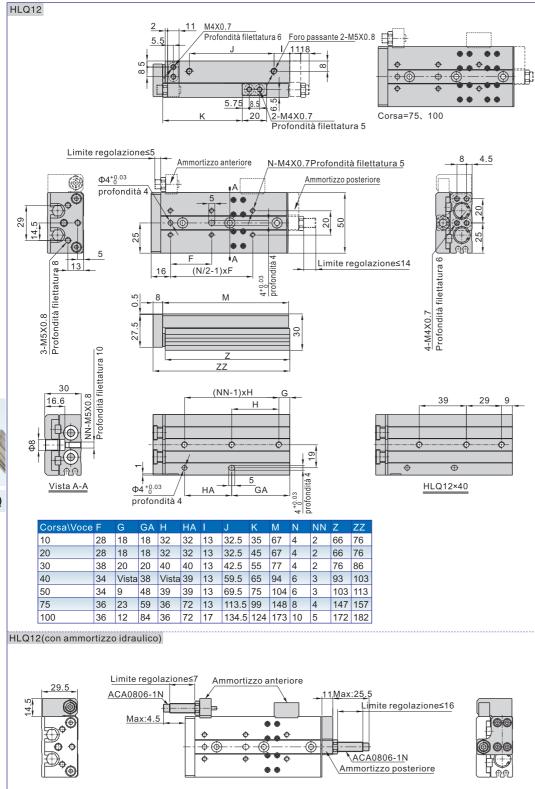
Serie HLQ

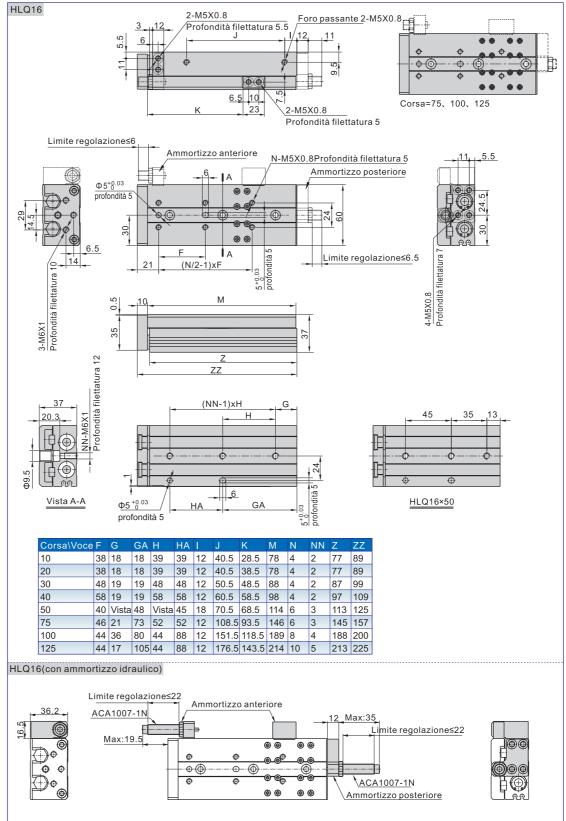


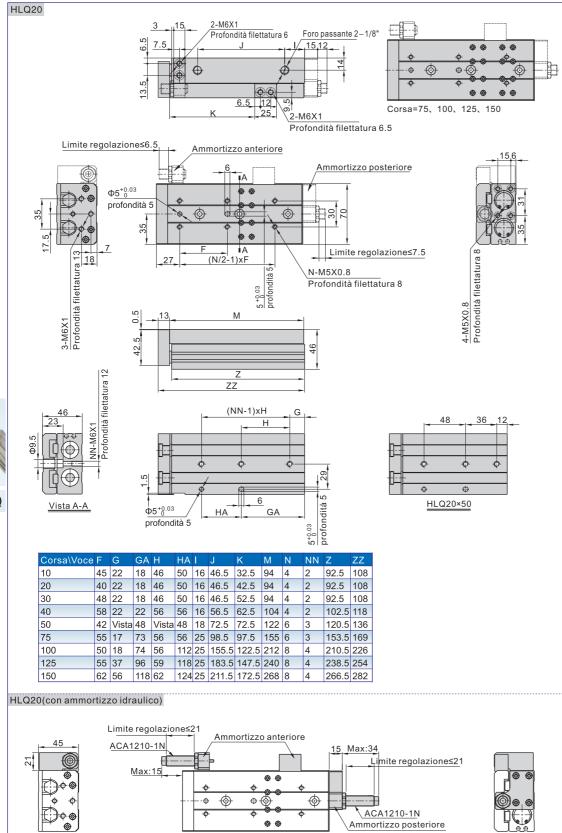


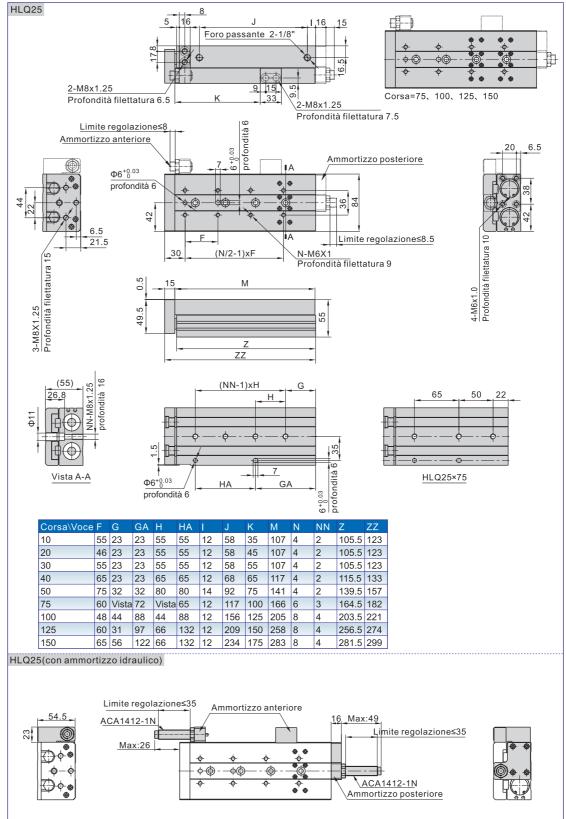
Serie HLQ


Struttura esterna


Corsa\Voce	F	G	GA	Н	HA	I	J	K	M	N	NN	Z	ZZ
10	25	7	13	25	19	10	18	23.5	46	4	2	45.5	53
20	25	14	14	28	28	10	28	33.5	56	4	2	55.5	63
30	26	Vista	29	Vista	27	10	42	43.5	70	6	3	69.5	77
40	32	8	39	31	31	12	54	53.5	84	6	3	83.5	91
50	46	8	37	29	58	12	79	63.5	109	6	4	108.5	116
75	50	31	61	30	60	10	107	88.5	135	6	4	134.5	142


Serie HLQ

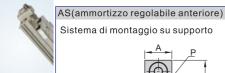

Serie HLQ


Serie HLQ

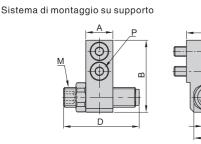
Serie HLQ

Serie HLQ——Accessori

Codice di ordinazione

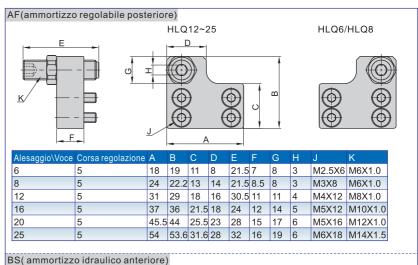


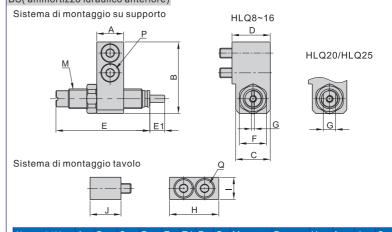
Selezione degli accessori

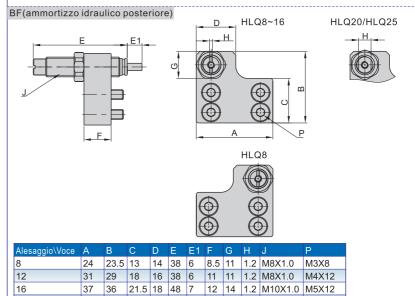

Accessori\Stelo		6	8	12
Ammortizzo regolabile	Α	F-HLQ6A	F-HLQ8A	F-HLQ12A
(ambo i lati)	В	×	F-HLQ8B	F-HLQ12B
Ammortizzo	AS	F-HLQ6AS	F-HLQ8AS	F-HLQ12AS
regolabile anteriore	BS	×	F-HLQ8BS	F-HLQ12BS
Ammortizzo	AF	F-HLQ6AF	F-HLQ8AF	F-HLQ12AF
regolabile posteriore	BF	×	F-HLQ8BF	F-HLQ12BF
Accessori\Stelo				
Accessori\Stelo		16	20	25
Accessori\Stelo Ammortizzo regolabile	А	16 F-HLQ16A	F-HLQ20A	25 F-HLQ25A
	A B			
Ammortizzo regolabile		F-HLQ16A	F-HLQ20A	F-HLQ25A
Ammortizzo regolabile (ambo i lati)	В	F-HLQ16A F-HLQ16B	F-HLQ20A F-HLQ20B	F-HLQ25A F-HLQ25B
Ammortizzo regolabile (ambo i lati) Ammortizzo	B AS	F-HLQ16A F-HLQ16B F-HLQ16AS	F-HLQ20A F-HLQ20B F-HLQ20AS	F-HLQ25A F-HLQ25B F-HLQ25AS

Nota: A=AS+AF; B=BS+BF。

Dimensioni


HLQ




Alesaggio\Voce Corsa regolazione A B

5		7	19	10.5	16.5	8	3
5		8.5	22	14	21.5	11	4
5		11	29	15.5	30.5	11	4
5		12	36	17.5	24	14	5
5		15	44.5	22	28	17	6
5		16	54	24	32	19	6
M	Р		Н	1	J	Q	
M6×1.0	M2.	5X10	12.5	6.5	10.5	M2.5	5X10
M8×1.0	МЗХ	(14	14.5	8	12	МЗХ	14
$M8 \times 1.0$	M4X	(16	20	9	12.5	M4X	12
$M10 \times 1.0$	M5×	(16	23	10.5	17	M5X	16
$M12 \times 1.0$	M6X	(20	25	12.5	21	M6X	20
M14 × 1.5	M8X	/OO	33	16.5	23	M8X	
	5 5 5 5 5 5 M M6×1.0 M8×1.0 M8×1.0 M10×1.0 M12×1.0	5 5 5 5 5 5 M P M6 × 1.0 M2.4 M8 × 1.0 M3× M8 × 1.0 M4× M10 × 1.0 M5× M12 × 1.0 M6×	5 8.5 5 11 5 12 5 15 5 16 M P M6 × 1.0 M2.5X10 M8 × 1.0 M3X14 M8 × 1.0 M4X16 M10 × 1.0 M5X16 M12 × 1.0 M6X20	5 8.5 22 5 11 29 5 12 36 5 15 44.5 5 16 54 M P H M6 × 1.0 M2.5 X 10 12.5 M8 × 1.0 M3X 14 14.5 M8 × 1.0 M4X 16 20 M10 × 1.0 M5X 16 23 M12 × 1.0 M6X 20 25	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 8.5 22 14 21.5 11 5 11 29 15.5 30.5 11 5 12 36 17.5 24 14 5 15 44.5 22 28 17 5 16 54 24 32 19 M P H I J Q M6 × 1.0 M2.5X10 12.5 6.5 10.5 M2.5 M8 × 1.0 M3X14 14.5 8 12 M3X M8 × 1.0 M4X16 20 9 12.5 M4X M10 × 1.0 M5X16 23 10.5 17 M5X M12 × 1.0 M6X20 25 12.5 21 M6X

Αŀ	esaggio\Voce	Α	В	C	D	E	E1	F	G	M	Р	Н	l e	J	Q
8		8.5	22	12.5	14	38	6	11	1.2	M8X1.0	M3X14	14.5	8	12	M3X14
12	2	11	29	14	15.5	38	6	11	1.2	M8X1.0	M4X16	20	9	12.5	M4X12
16	6	12	36	16	17.5	48	7	14	1.2	M10X1.0	M5X16	23	10.5	17	M5X16
20)	15	44.5	20	22	50	10	17	11	M12X1.0	M6X20	25	12.5	21	M6X20
25	5	16	54	22	24	66	12	19	12	M14X1.5	M8X20	33	16.5	23	M8X20

45.5 44 25.5 23 50 10 15 17 11 M12X1.0 M5X16 54 53.6 31.6 28 66 12 16 19 12 M14X1.5 M6X18

25