

EMORE engineering.

Plus System

Rollon S.p.A. nasce nel 1975 come produttore di componenti per la movimentazione lineare. Oggi il gruppo Rollon è leader nella progettazione, produzione e commercializzazione di guide lineari, telescopiche e attuatori, con headquarters in Italia e sedi e distributori in tutto il mondo. I prodotti Rollon vengono utilizzati in numerosi settori industriali con soluzioni creative ed efficienti, in una moltitudine di applicazioni che ci accompagnano nella vita di tutti i giorni.

Soluzioni per la movimentazione lineare

Guide Telescopiche Guide a estrazione parziale/totale Guide per cariche pesanti Guide per applicazioni manuali

Attuatori Attuatori a cinghia Attuatori a vite Attuatori a cremagliera

Competenza

- Gamma completa di guide lineari, telescopiche e attuatori
- Presenza internazionale con filiali e distributori
- Tempi di consegna rapidi in tutto il mondo
- Conoscenza tecnico-applicativa sul campo

Soluzioni a catalogo

Ampia disponibilità di prodotti e sezioni Guide lineari a cuscinetti e a sfere Guide telescopiche per carichi elevati Attuatori a cinghia e a vite Sistemi multi-asse

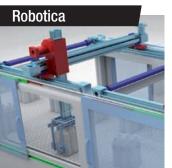
Consulenza

Know-how internazionale in numerosi settori Consulenza progettuale Massimizzazione delle performance e ottimizzazione dei costi

Personalizzazione

Prodotti speciali Ricerca e Sviluppo nuove soluzioni Tecnologie dedicate ai diversi settori Trattamenti ottimali

Sviluppo di applicazioni



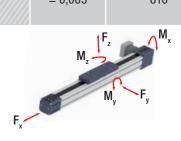
Indice

Plus System

Caratteristiche tecniche

1 Serie ELM	
Descrizione serie ELM	PLS-2
I componenti	PLS-3
Il sistema di movimentazione lineare	PLS-4
ELM 50 SP - ELM 50 CI	PLS-5
ELM 65 SP - ELM 65 CI	PLS-6
ELM 80 SP - ELM 80 CI	PLS-7
ELM 110 SP - ELM 110 CI	PLS-8
Lubrificazione, Riduttori epicicloidali	PLS-9
Alberi sporgenti	PLS-10
Albero cavo	PLS-11
Unità lineari in parallelo, Accessori	PLS-12
Codice di ordinazione	PLS-14
2 Serie ROBOT	71.0 (1
Descrizione serie ROBOT	PLS-15
I componenti Il sistema di movimentazione lineare	PLS-16
ROBOT 100 SP	PLS-17 PLS-18
ROBOT 100 SP ROBOT 100 SP-2C	PLS-19
ROBOT 100 SP-2C ROBOT 100 CE	PLS-18
ROBOT 100 CE ROBOT 100 CE-2C	PLS-20 PLS-21
ROBOT 130 SP	PLS-22
ROBOT 130 SP-2C	PLS-23
ROBOT 130 CE	PLS-24
ROBOT 130 CE-2C	PLS-25
ROBOT 160 SP	PLS-26
ROBOT 160 SP-2C	PLS-27
ROBOT 160 CE	PLS-28
ROBOT 160 CE-2C	PLS-29
ROBOT 220 SP	PLS-30
R0B0T 220 SP-2C	PLS-31
Lubrificazione, Riduttori epicicloidali	PLS-32
Alberi sporgenti	PLS-33
Albero cavo, Accessori	PLS-34
Codice di ordinazione	PLS-39
3 Serie SC	
Descrizione serie SC	PLS-40
I componenti	PLS-41
Il sistema di movimentazione lineare	PLS-42
SC 65 SP	PLS-43
SC 130 SP	PLS-44
SC 160 SP	PLS-45
Lubrificazione, Riduttori epicicloidali	PLS-46
Alberi sporgenti, Albero cavo	PLS-47
Accessori	PLS-48
Codice di ordinazione	PLS-51
Sistemi Multiassi	PI S-52

Carico statico e calcolo vita per Plus-Clean Room-Smart-Eco-Precision	SL-2
Carico statico e calcolo vita per Uniline	SL-4
Scheda dati	SL-9


Caratteristiche tecniche

Riferimento		Sezione			Azionamento			Protezione	
	Famiglia	Prodotto	Sfere	Cusci- netti	Cinghia dentata	Vite	Cremagliera		
		ELM						• •	
Plus System		ROBOT						•	
		SC						•	
Clean Room System	7	ONE						•	
	6	E-SMART							
Smart System	56	R-SMART							
	1611	S-SMART							
Eco System		ECO							
Uniline System	To.	A/C/E/ED/H							
	7	TH							
Precision		TT							
System		TV							
		TK				<i>m</i> [] <i>m</i>			

I dati riportati devono essere verificati in base all'applicazione. Vedere il capitolo "Carico statico e durata" a partire da pag. SL-2. Per una panoramica completa dei dati tecnici, è possibile consultare i nostri cataloghi su www.rollon.com
* Una corsa più lunga è disponibile per le versioni giuntate.

Taglia	Massima capacità di carico per carrello [N]			Massimo momento statico per carrello [Nm]			Massima velocità	Massima accelerazione	Ripetibilità [mm]	Massima corsa (per sistema)	
	F _x	F _y	F _z	M _x	M _y	M _z	[m/s]	[m/s²]	[]	[mm]	
50-65-80-110	4440	79000	79000	1180	7110	7110	5	50	± 0,05	6000*	P L S
100-130- 160-220	8510	158000	158000	13588	17696	17696	5	50	± 0,05	6000*	
65-130-160	5957	86800	86800	6770	17577	17577	5	50	± 0,05	2500	
50-80-110	4440	92300	110760	1110	9968	8307	5	50	± 0,05	6000*	C R S
30-50-80-100	4440	87240	87240	1000	5527	5527	4	50	± 0,05	6000*	S
120-160-220	8880	237000	237000	20145	30810	30810	4	50	± 0,05	6000*	
50-65-80	2250	51260	51260	520	3742	3742	4	50	± 0,05	2000	
60-80-100	4070	43400	43400	570	4297	4297	5	50	± 0,05	6000*	E S
40-55-75-100	1000	25000	17400	800,4	24917	15752	9	20	± 0,05	5700*	U S
90-110-145	27000	86800	86800	3776	2855	2855	2		± 0,005	1500	P S
100-155- 225-310	58300	230580	274500	30195	26627	22366	2,5		± 0,005	3000	
60-80- 110-140	58300	48400	48400	2251	3049	3049	2,5		± 0,01	4000	
40-60-80	12462	50764	50764	1507	622	622	1,48		± 0,003	810	

Serie ELM /

Descrizione serie ELM

Fig. 1

ELM

Gli attuatori lineari ELM sono i più versatili attuatori lineari a cinghia di Rollon.

Gli attuatori hanno una struttura autoportante in alluminio estruso e anodizzato con sezione quadra realizzata in quattro taglie, da 50 a 110 mm. La trasmissione è a cinghia dentata in poliuretano con inserti in acciaio e traslazione su monorotaia con due pattini a ricircolo di sfere ingabbiate.

Una cinghia di copertura in poliuretano assicura la protezione completa del sistema di trasmissione da sporco, trucioli, liquidi e altri contaminanti, garantendo una tenuta maggiore rispetto agli attuatori con bandelle di acciaio inossidabile.

Una particolare attenzione è posta alla scelta della componentistica, che consente al sistema di lavorare con cicli produttivi stressanti ed un piano di manutenzione estremamente limitato. Ottenuto grazie a sistemi di protezione dell'attuatore, serbatoi di lubrificante e le tecnologie delle sfere ingabbiate nei carrelli a ricircolo, così come i raschiaolio a doppio labbro. Pulegge, sfere e alberi di trasmissione sono dimensionati con fattori di sicurezza elevati. Gli attuatori lineari ELM sono una soluzione molto apprezzata per applicazioni in ambienti di lavoro molto ostili, sporchi, che richiedono cicli di lavoro ad alte prestazioni dinamiche e di precisione.

Versione anti-corrosione Plus System

Tutti gli attuatori lineari della serie Plus System sono disponibili anche nella versione anti-corrosione, con elementi in acciaio inossidabile, per applicazioni in ambienti difficili e/o sottoposti a frequenti lavaggi.

Le Unità Lineari Plus System della serie anti-corrosione, sono realizzate utilizzando estrusi d'alluminio Anticorodal 6060 e 6082 anodizzati, sui quali sono montati cuscinetti, guide lineari, bulloneria e componenti in acciaio INOX, che evitano o ritardano l'insorgere di corrosione dovuta alla presenza di umidità negli ambienti d'utilizzo delle unità stesse.

Speciali trattamenti superficiali senza deposito, uniti ad una lubrificazione realizzata con grassi vegetali alimentari biologici, permettono di utilizzare gli attuatori lineari anticorrosione anche in applicazioni molto sensibili e delicate quali quelle alimentari e farmaceutiche, ove l'inquinamento del prodotto manipolato è assolutamente vietato.

- Elementi interni in acciaio inossidabile
- Estrusi d'alluminio Anticorodal 6060 e 6082 anodizzati
- Guide lineari in acciaio INOX AISI 440
- Lubrificazione con grassi vegetali alimentari biologici

I componenti

Profilo in alluminio

I profili autoportanti usati per le unità lineari Rollon serie ELM sono stati studiati e realizzati in collaborazione con aziende leader del settore al fine di ottenere estrusi che riescano a coniugare doti di elevata resistenza meccanica ad un peso contenuto. Il materiale impiegato è lega di alluminio 6060 anodizzato superficialmente (vedi caratteristiche fisicochimiche sotto). Le tolleranze sulle dimensioni sono conformi allo standard EN 755-9.

Cinghia di trazione

Nelle unità lineari Rollon serie ELM vengono usate cinghie in poliuretano con profilo del dente tipo AT e cavi in acciaio. Questa categoria di cinghie per trasmissione moto risulta ottimale per l'impiego nelle unità lineari, in quanto si rivela la più efficace in presenza di alte trazioni, spazi contenuti e ove sia richiesta una bassa rumorosità. La combinazione con le pulegge a gioco zero rende possibile un movimento alternato senza gioco. Avendo ottimizzato il rapporto tra larghezza massima di cinghia e dimensioni del profilo si possono ottenere le seguenti prestazioni:

- Alta velocità
- Bassa rumorosità
- Bassa usura

Carro

Il carro delle unità lineari Rollon serie ELM è in alluminio anodizzato superficialmente. Le dimensioni variano in relazione ai modelli. Il carro è costituito da più parti per consentire il passaggio della cinghia di protezione. È dotato, inoltre, di apposite guarnizioni (spazzole), inserite nelle parti laterali e frontali, per un'ulteriore protezione. Tutti i fori di fissaggio utilizzabili per il collegamento ad apparecchiature esterne sono muniti di elicoidi in acciaio INOX.

Cinghia di protezione

Le unità lineari Rollon serie ELM sono dotate di una cinghia in poliuretano a protezione di tutte le parti interne del profilo dalla polvere e da corpi estranei. La cinghia è inserita nel profilo grazie a micro cuscinetti alloggiati all'interno del carro. Questo sistema consente di mantenere la cinghia nella sua sede con valori di attrito volvente molto bassi.

Dati generali alluminio utilizzato: AL 6060

Composizione chimica [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurità
Resto	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 1

Caratteristiche fisiche

Densità	Modulo di elasticità	Coefficiente di dilatazione termica (20°-100°C)	Conducibilità termica (20°C)	Calore specifico (0°-100°C)	Resistività	Temp. di fusione
kg	kN	10-6	W	J	0 100	0.0
dm ³	mm ²	K	m . K	kg . K	Ω . m . 10^{-9}	°C
2,7	69	23	200	880-900	33	600-655

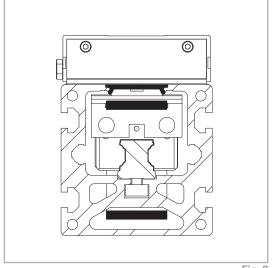
Caratteristiche meccaniche

Rm	Rp (02)	A	НВ							
N — mm²	N — mm²	%	_							
205	165	10	60-80							

Tab. 3

Il sistema di movimentazione lineare

Il sistema di movimentazione lineare risulta determinante per la capacità di carico, la velocità e l'accelerazione massima. Nelle unità Rollon serie ELM vengono usati due diversi sistemi:


ELM...SP con guide a ricircolo di sfere

- Una guida a ricircolo di sfere ad elevata capacità di carico viene fissata in una apposita sede all'interno del profilo di alluminio.
- Il carro dell'unità lineare è montato su due carrelli a ricircolo di sfere precaricati.
- I carrelli a ricircolo di sfere possono sopportare carichi nelle quattro direzioni principali grazie alle quattro corone di sfere.
- I due carrelli sono dotati di protezioni su entrambi i lati e, dove necessario, è possibile montare un ulteriore raschiatore per ambienti molto polverosi.
- I carrelli a ricircolo di sfere delle versioni SP sono inoltre dotati di una gabbia di ritenuta, che elimina il contatto "acciaio-acciaio" tra corpi volventi adiacenti ed evita disallineamenti degli stessi nei circuiti.
- Sui frontali dei carrelli a ricircolo di sfere sono installati dei serbatoi di lubrificante che erogano la giusta quantità di grasso al sistema allungando gli intervalli di manutenzione.

Il sistema sopra descritto consente di ottenere:

- Elevate velocità e accelerazioni
- Elevate capacità di carico
- Elevati momenti ribaltanti ammissibili
- Bassi attriti
- Lunghissime durate
- Assenza di manutenzione (in base all'applicazione)
- Bassa rumorosità

Sezione ELM SP

Fig. 2

ELM...Cl con guide a rotelle all'interno del profilo

- Due barre in acciaio temprato con durezza 58/60 HRC (tolleranza h6) vengono applicate al profilo nell'apposita sede mediante una operazione di cianfrinatura.
- Il carro è dotato di sei rotelle a due corone di sfere a contatto obliquo, con profilo esterno ad arco gotico che consente un ottimo accoppiamento con le barre in acciaio.
- Le sei rotelle del carro sono montate su perni in acciaio, di cui due eccentrici, indispensabili per le tarature ed il precarico del sistema.
- Per mantenere pulite e lubrificate le piste di scorrimento vengono inseriti, alle estremità del carro, quattro feltri intrisi con grasso di adeguata viscosità e relativo serbatoio.

Il sistema sopra descritto consente di ottenere:

- Buona precisione di posizionamento
- Ottima silenziosità
- Assenza di manutenzione (in base all'applicazione)

Sezione ELM CI

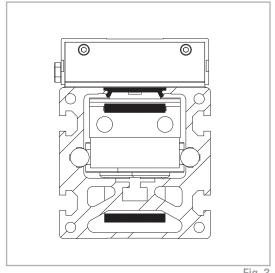
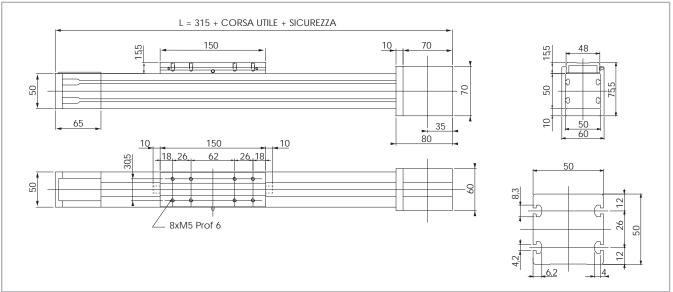



Fig. 3

ELM 50 SP - ELM 50 CI

Dimensioni ELM 50 SP - ELM 50 CI

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 4

Dati tecnici

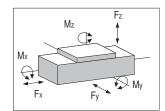
	Ti	ро
	ELM 50 SP	ELM 50 CI
Lunghezza corsa utile max. [mm]	3700	6000*1
Ripetibilità max.di posizionamento [mm]*2	± 0,05	± 0,05
Velocità max.di traslazione [m/s]	4,0	1,5
Accelerazione max. [m/s²]	50	1,5
Tipo di cinghia	22 AT 5	22 AT 5
Tipo di puleggia	Z 23	Z 23
Diametro primitivo della puleggia [mm]	36,61	36,61
Spostamento carro per giro puleggia [mm]	115	115
Peso del carro [kg]	0,4	0,5
Peso corsa zero [kg]	1,8	1,7
Peso per ogni 100 mm di corsa utile [kg]	0,4	0,3
Coppia a vuoto [Nm]	0,4	0,4
Momento di inerzia delle pulegge [g mm²]	19810	19810

^{*1)} È possibile realizzare corse fino a 9000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ELM 50	0,025	0,031	0,056

Tab. 5


Cinghia di trazione

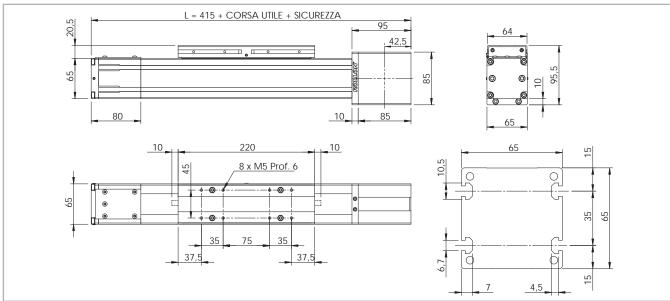
La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo	Largh.	Peso
	cinghia	cinghia [mm]	kg/m
ELM 50	22 AT 5	22	0,072

Tab. 6

Lunghezza della cinghia (mm) = 2 x L - 130 (versioni SP e Cl)

ELM 50 - Capacità di carico


Tipo	F [1	: × V]	F [I	: Ňj	F [!	: ^z N]	N [N	l _x m]	N [N	(_y m]	N [N	Z
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
ELM 50 SP	809	508	7000	4492	7000	4492	42	27	231	148	231	148
ELM 50 CI	809	624	1480	2540	910	1410	16	25	36	55	58	99

Tab. 4

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

ELM 65 SP - ELM 65 CI

Dimensioni ELM 65 SP - ELM 65 CI

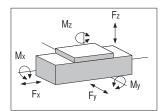
^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 5

Dati tecnici

	Ti	ро
	ELM 65 SP	ELM 65 CI
Lunghezza corsa utile max. [mm]*1	6000	6000
Ripetibilità max.di posizionamento [mm]*2	± 0,05	± 0,05
Velocità max.di traslazione [m/s]	5,0	1,5
Accelerazione max. [m/s²]	50	1,5
Tipo di cinghia	32 AT 5	32 AT 5
Tipo di puleggia	Z 32	Z 32
Diametro primitivo della puleggia [mm]	50,93	50,93
Spostamento carro per giro puleggia [mm]	160	160
Peso del carro [kg]	1,1	1,0
Peso corsa zero [kg]	3,5	3,3
Peso per ogni 100 mm di corsa utile [kg]	0,6	0,5
Coppia a vuoto [Nm]	1,5	1,5
Momento di inerzia delle pulegge [g mm²]	117200	117200

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
ELM 65	0,060	0,086	0,146
			Tab. 9

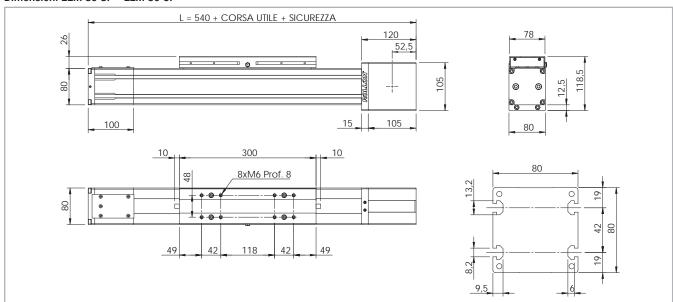
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
ELM 65	32 AT 5	32	0,105
			Tab. 10

Lunghezza della cinghia (mm) = $2 \times L - 180$ (versione SP) $2 \times L - 145$ (versione CI)

Tipo	F [I	: X V]	F [1	: V N]	F [I	: v V]	N [N	Λ	N [N	V	N [N:	Z
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
ELM 65 SP	1344	883	24200	14560	24200	14560	240	138	747	449	747	449
ELM 65 CI	1344	1075	3800	7340	2470	4080	58	96	100	170	160	310


Tab. 8

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

ELM 65 - Capacità di carico

ELM 80 SP - ELM 80 CI

Dimensioni ELM 80 SP - ELM 80 CI

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 6

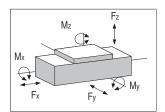
Dati tecnici

	Ti	ро
	ELM 80 SP	ELM 80 CI
Lunghezza corsa utile max. [mm]*1	6000	6000
Ripetibilità max.di posizionamento [mm]*2	± 0,05	± 0,05
Velocità max.di traslazione [m/s]	5,0	1,5
Accelerazione max. [m/s²]	50	1,5
Tipo di cinghia	32 AT 10	32 AT 10
Tipo di puleggia	Z 19	Z 19
Diametro primitivo della puleggia [mm]	60,48	60,48
Spostamento carro per giro puleggia [mm]	190	190
Peso del carro [kg]	2,7	2,5
Peso corsa zero [kg]	10,5	9,5
Peso per ogni 100 mm di corsa utile [kg]	1,0	0,8
Coppia a vuoto [Nm]	2,2	2,2
Momento di inerzia delle pulegge [g mm²]	388075	388075

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti	d'inerzia	del	profilo	di	alluminio
INIOIIICIILI	u iiitti zia	uu	promo	uı	anunnin

Tipo	l _x [10 ⁷ mm⁴]	_y [10 ⁷ mm ⁴]	 [10 ⁷ mm ⁴]
ELM 80	0,136	0,195	0,331
			Tab. 13


Cinghia di trazione

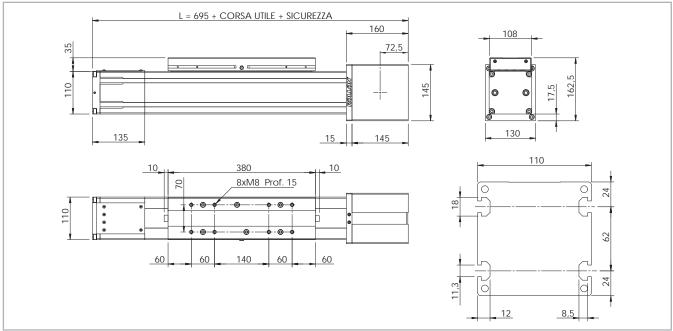
La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo	Largh.	Peso
	cinghia	cinghia [mm]	kg/m
ELM 80	32 AT 10	32	0,185

Tab. 14

Lunghezza della cinghia (mm) = 2 x L - 230 (SP e CI versione)

Tipo	F [I	: X N]	F [t	: V N]	F [I	: ^z N]	N [N	l _x m]	N [N	(_y m]	N [N	l _, m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
ELM 80 SP	2013	1170	43400	34800	43400	34800	570	440	3168	2540	3168	2540
ELM 80 CI	2013	1605	8500	17000	4740	8700	140	250	390	710	700	1390


Tab. 12

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

ELM 80 - Capacità di carico

ELM 110 SP - ELM 110 CI

Dimensioni ELM 110 SP - ELM 110 CI

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 7

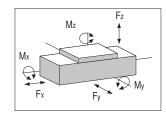
Dati tecnici

	Ti	ро
	ELM 110 SP	ELM 110 CI
Lunghezza corsa utile max. [mm]*1	6000	6000
Ripetibilità max.di posizionamento [mm]*2	± 0,05	± 0,05
Velocità max.di traslazione [m/s]	5,0	1,5
Accelerazione max. [m/s²]	50	1,5
Tipo di cinghia	50 AT 10	50 AT 10
Tipo di puleggia	Z 27	Z 27
Diametro primitivo della puleggia [mm]	85,94	85,94
Spostamento carro per giro puleggia [mm]	270	270
Peso del carro [kg]	5,6	5,1
Peso corsa zero [kg]	22,5	21,6
Peso per ogni 100 mm di corsa utile [kg]	1,4	1,1
Coppia a vuoto [Nm]	3,5	3,5
Momento di inerzia delle pulegge [g mm²]	2,193·10 ⁶	2,193·10 ⁶

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon

Momenti d'inerzia del profilo di alluminio

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ELM 110	0,446	0,609	1,054
			Tab. 17


Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
ELM 110	50 AT 10	50	0,290

Tab. 18

Lunghezza della cinghia (mm) = 2 x L - 290 (SP e CI versione)

ELM 110 - Capacità di carico

Tipo	F [N	Ĭj	F [1	: V]	F [1	: z V]	N [N	l _x m]	N [Ni	l _y m]	N [N	(_z m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
ELM 110 SP	4440	2940	79000	55000	79000	55000	1180	780	7110	4950	7110	4950
ELM 110 CI	4440	3660	19300	41700	12500	24500	330	650	960	1880	1480	3200

Tab. 16

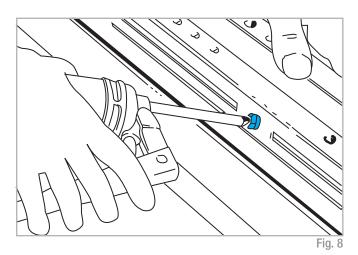
Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

^{*2)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Lubrificazione

Unità lineari SP con guide a ricircolo di sfere

Nelle versioni SP vengono montate guide a ricircolo di sfere autolubrificanti.


I carrelli a ricircolo di sfere delle versioni SP sono inoltre dotati di una gabbia di ritenuta, che elimina il contatto "acciaio-acciaio" tra corpi volventi adiacenti ed evita disallineamenti degli stessi nei circuiti.

Sui frontali dei carrelli a ricircolo di sfere sono stati installati dei serbatoi di lubrificante che rilasciano la giusta quantità di grasso nelle zone ove le sfere sopportano i carichi applicati. Questo sistema garantisce lunghi intervalli di manutenzione: per la versione SP ogni 5000 km o 1 anno

d'uso in base al valore raggiunto per primo. In caso di elevate dinamiche del sistema e/o di elevati carichi applicati, contattare Rollon per le necessarie verifiche.

Unità lineari CI con guide a rotelle

Le unità lineari con guide a rotelle sono dotate di un sistema di lubrificazione continuativa. Quattro feltri, intrisi di grasso di adeguata viscosità con relativi serbatoi, garantiscono una durata di ca. 6000 km senza rilubrificazione. Per un'eventuale rilubrificazione al fine di ottenere durate superiori, contattare i nostri uffici.

Quantità necessaria di lubrificante per la rilubrificazione:

Tipo	Unità: [g]
ELM 50 SP	1
ELM 65 SP	1,6
ELM 80 SP	2,8
ELM 110 SP	5,6

Tab. 20

- Inserire il beccuccio erogatore negli appositi ingrassatori.
- Tipo di lubrificante: grasso a base di sapone di litio della classe NLGI 2.
- Per applicazioni intense o difficili condizioni ambientali, è necessaria una lubrificazione più frequente.
 - Per maggiori informazioni rivolgersi a Rollon

Riduttori epicicloidali

Montaggio a destra o a sinistra rispetto alla testata motrice

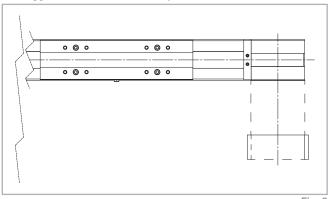
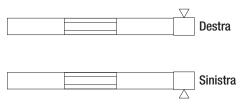
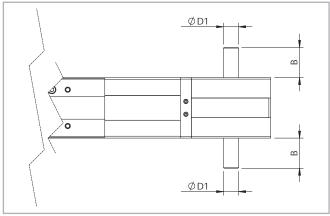



Fig.

Le unità lineari della serie ELM possono essere realizzate con diversi tipi di trasmissione del moto. Su tutte le versioni la puleggia motrice viene accoppiata all'albero del riduttore mediante calettatori conici. Questo sistema garantisce nel tempo la totale assenza di giochi.


Versioni con riduttore epicicloidale

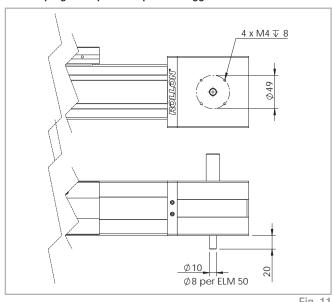
I riduttori epicicloidali vengono utilizzati per applicazioni di robotica, automazione e manipolazione che richiedono alta dinamica, cicli stressanti con carichi e precisioni elevate. Sono disponibili modelli standard con gioco da 3' a 15' e con rapporto di riduzione da 1:3 a 1:1000. Per montaggi di riduttori epicicloidali fuori standard contattare i nostri uffici per verifica.

Alberi sporgenti

Albero sporgente tipo AS

Unità	Tipo di albero	В	D1
ELM 50	AS 12	25	12h7
ELM 65	AS 15	35	15h7
ELM 80	AS 20	40	20h7
ELM 110	AS 25	50	25h7

Tab. 21

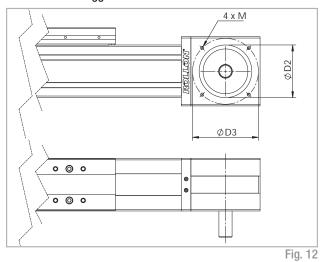

Posizione dell'albero sporgente a destra o a sinistra rispetto alla testata motrice

		-4	
ъ	n	-7	1
	u	- 1	٦

Unità	Tipo di albero	Codice testata AS a sinistra	Codice testata As a destra	Codice testata doppio AS
ELM 50	AS 12	1E	1C	1A
ELM 65	AS 15	1E	1C	1A
ELM 80	AS 20	1E	1C	1A
ELM 110	AS 25	1E	1C	1A

Tab. 22

Albero sporgente tipo AE 10 per montaggio encoder + AS



Unità	Codice testata AS a destra + AE	Codice testata AS a sinistra + AE
ELM 50	VF	VG
ELM 65	1G	11
ELM 80	1G	11
ELM 110	1G	11

Tab. 23

Posizione dell'albero sporgente a destra o a sinistra rispetto alla testata motrice

Albero con centraggio

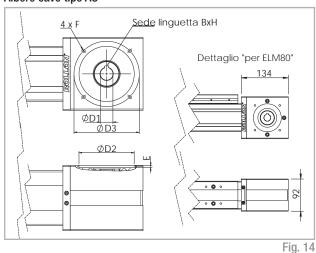


Unità	Tipo di albero	D2	D3	M	Codice testata As a sinistra	Codice testata As a destra
ELM 50	AS 12	55	70	M5	VQ	VP
ELM 65	AS 15	60	85	M6	UQ	UP
ELM 80	AS 20	80	100	M8	UN	UM
ELM 110	AS 25	110	130	M8	UL	UI

Tab. 24

Rollon può fornire testate motrici con albero sporgente, centraggio e fori filettati.

Foro ¼ G


Е	i	n		4	d
1	ı	y	ŀ		9

Unità	Pri	mo	Seco	ondo
	A B		С	D
ELM 50	20	10	14	20
ELM 65	20	11	14	20
ELM 80	30	20	20	30
ELM 110	45	20,5	33	30

Tab. 25

Albero cavo

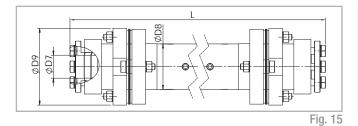
Albero cavo tipo AC

Applicabile su unità	Tipo di albero	Codice testata
ELM 50	AC 12	2A
ELM 80	AC 19	2A
ELM 110	AC 25	2A
ELM 110	AC 32	2C

Tab. 26

Per il montaggio dei riduttori standard scelti da Rollon è prevista una flangia di connessione (opzionale). Per ulteriori informazioni contattare i nostri uffici.

Unità mm


Omta mm							
Applicabile su unità	Tipo di albero	D1	D2	D3	E	F	Linguetta B x H
ELM 50	AC 12	12H7	60	75	3,5	M5	4 x 4
ELM 80*	AC 19	19H7	80	100	3,5	M6	6 x 6
ELM 110	AC 25	25H7	110	130	4,5	M8	8 x 7
ELM 110	AC 32	32H7	130	165	4,5	M10	10 x 8

Le dimensioni della testata cambiano (vedere dettaglio "A", Fig. 14)

Unità lineari in parallelo

Kit di sincronizzazione per l'utilizzo delle unità lineari ELM in parallelo

Quando è indispensabile realizzare una movimentazione costituita da due unità lineari in parallelo, si rende necessario l'impiego di un kit di sincronizzazione, che è composto da giunti di precisione a lamelle originali Rollon completi di calettatori conici e albero cavo di trasmissione in alluminio.

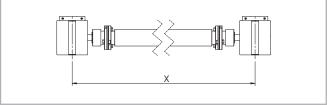
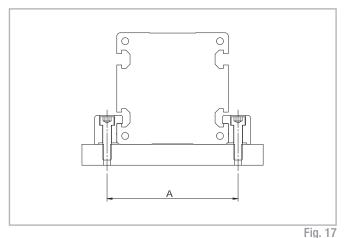


Fig. 16

Dimensioni (mm)

Applicabile su unità	Tipo di albero	D7	D8	D9	Codice	Formula per il calcolo della lunghezza
ELM 50	AP 12	12	25	45	GK12P1A	L= X-68 [mm]
ELM 65	AP 15	15	40	69,5	GK15P1A	L= X-74 [mm]
ELM 80	AP 20	20	40	69,5	GK20P1A	L= X-97 [mm]
ELM 110	AP 25	25	70	99	GK25P1A	L= X-165 [mm]

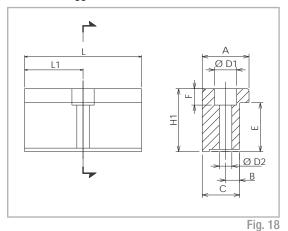

Tab. 28

Accessori

Fissaggio con staffe

Le unità lineari Rollon serie ELM possono essere montate in qualsiasi posizione grazie ai loro sistemi di traslazione che consentono all'unità di sopportare carichi in qualsiasi direzione.

Per il fissaggio delle unità si consiglia di usare le apposite cave esterne del profilo di alluminio come nei disegni sotto riportati.

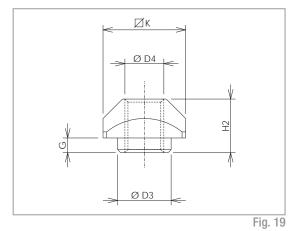

Unità	A (mm)
ELM 50	62
ELM 65	77
ELM 80	94
ELM 110	130
	Tah 20

Tab. 29

Attenzione:

Non fissare le unità lineari tramite le testate alle estremità del profilo.

Staffa di fissaggio


Dimensioni (mm)

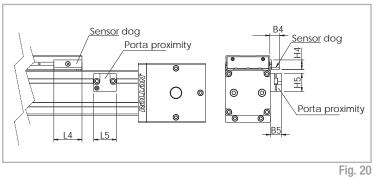
Unità	Α	H1	В	С	Е	F	D1	D2	L	Lt	Codice
ELM 50	20	14	6	16	10	6	10	5,5	35	17,5	1000958
ELM 65	20	17,5	6	16	11,5	6	9,4	5,3	50	25	1001490
ELM 80	20	20,7	7	16	14,7	7	11	6,4	50	25	1001491
ELM 110	36,5	28,5	10	31	18,5	11,5	16,5	10,5	100	50	1001233
01-41- 11:41-											Tab. 30

Staffa di fissaggio

Blocchetto in alluminio anodizzato per il fissaggio delle unità lineari tramite le cave laterali del profilo.

Dadi a T

Dimensioni (mm)


Unità	D3	D4	G	H2	К	Codice
ELM 50	-	M4	-	3,4	8	1001046
ELM 65	6,7	M5	2,3	6,5	10	1000627
ELM 80	8	M6	3,3	8,3	13	1000043
ELM 110	11	M8	2,8	10,8	17	1000932

Tab. 31

Dadi a T

Dadi in acciaio da utilizzare nelle cave del profilo.

Proximity Serie ELM...SP - ELM...CI

Porta proximity Blocchetto in allu

Blocchetto in alluminio anodizzato colore rosso, completo di dadi a "T" per il fissaggio nelle cave del profilo.

Sensor dog

Profilo a "L" in ferro zincato montato sul carro ed utilizzato per la lettura da parte del proximity.

Dimensioni (mm)

Unità	В4	B5	L4	L5	H4	Н5	Tipo proximity	Codice sensor dog	Codice porta proximity
ELM 50	9,5	14	25	29	11,9	22,5	Ø 8	G000268	G000211
ELM 65	17,2	20	50	40	17	32	Ø 12	G000267	G000212
ELM 80	17,2	20	50	40	17	32	Ø 12	G000267	G000209
ELM 110	17,2	20	50	40	17	32	Ø 12	G000267	G000210

Codice di ordinazione / ~

Codice di identificazione per l'unità lineare ELM

Per creare i codici identificativi per i prodotti Actuator Line, è possibile visitare: http://configureactuator.rollon.com

Serie ROBOT V

Descrizione serie ROBOT

Fig. 21

ROBOT

Gli attuatori lineari della serie ROBOT, grazie alla sezione rettangolare e all'utilizzo di una coppia di guide lineari, sono particolarmente adatti per applicazioni con carichi pesanti, traino e spinta di masse considerevoli, cicli di lavoro stressanti, possibilità di montaggio a sbalzo o a portale, per la movimentazione lineare all'interno di linee di automazione industriale. Gli attuatori lineari ROBOT, robusti e dalla significativa capacità di carico, sono la soluzione per le applicazioni più esigenti.

Struttura autoportante in alluminio estruso e anodizzato con sezione rettangolare realizzata in quattro taglie da 100 a 220 mm. Trasmissione a cinghia dentata in poliuretano con inserti in acciaio e traslazione su due rotaie parallele con quattro pattini a ricircolo di sfere ingabbiate o rotelle ad arco gotico su barre rettificate. Disponibile anche con cursori multipli, indipendenti o folli, per migliorare ulteriormente la capacità di carico.

Una cinghia di copertura in poliuretano assicura la protezione completa del sistema di trasmissione da sporco, trucioli, liquidi e altri contaminanti.

Le applicazioni nelle quali trovano migliore collocazione, risultano quelle in cui carichi particolarmente gravosi sono movimentati in spazi estremamente contenuti, e dove non sia permesso un eventuale fermo macchina per la normale manutenzione dei sistemi.

Per ogni sezione della serie ROBOT è disponibile anche la versione 2C, con 2 carri indipendenti. Ogni carro è movimentato dalla propria cinghia. La testata motrice può connettersi a due riduttori, uno su ogni lato. Questa soluzione è ideale per le applicazioni di pick & place o per carico/scarico.

Versione anti-corrosione Plus System

Tutti gli attuatori lineari della serie Plus System sono disponibili anche nella versione anti-corrosione, con elementi in acciaio inossidabile, per applicazioni in ambienti difficili e/o sottoposti a freguenti lavaggi.

Le Unità Lineari Plus System della serie anti-corrosione, sono realizzate utilizzando estrusi d'alluminio Anticorodal 6060 e 6082 anodizzati, sui quali sono montati cuscinetti, guide lineari, bulloneria e componenti in acciaio INOX, che evitano o ritardano l'insorgere di corrosione dovuta alla presenza di umidità negli ambienti d'utilizzo delle unità stesse.

Speciali trattamenti superficiali senza deposito, uniti ad una lubrificazione realizzata con grassi vegetali alimentari biologici, permettono di utilizzare gli attuatori lineari anticorrosione anche in applicazioni molto sensibili e delicate quali quelle alimentari e farmaceutiche, ove l'inquinamento del prodotto manipolato è assolutamente vietato.

- Elementi interni in acciaio inossidabile
- Estrusi d'alluminio Anticorodal 6060 e 6082 anodizzati
- Guide lineari in acciaio INOX AISI 440
- Lubrificazione con grassi vegetali alimentari biologici

I componenti

Profilo in alluminio

I profili autoportanti usati per le unità lineari Rollon serie ROBOT, sono stati studiati e realizzati in collaborazione con aziende leader del settore al fine di ottenere estrusi che riescano a coniugare doti di elevata resistenza meccanica a un peso contenuto. Il materiale impiegato è lega di alluminio 6060 anodizzato superficialmente (vedi caratteristiche fisico-chimiche sotto). Le tolleranze sulle dimensioni sono conformi allo standard EN 755-9.

Cinghia di trazione

Nelle unità lineari Rollon serie ROBOT vengono utilizzate cinghie in poliuretano con profilo del dente tipo AT e cavi in acciaio. Questa categoria di cinghie per trasmissione moto risulta ottimale per l'impiego nelle unità lineari, in quanto si rivela la più efficace in presenza di alte trazioni, spazi contenuti e ove sia richiesta una bassa rumorosità. La combinazione con le puleggie a gioco zero rende possibile un movimento alternato senza gioco. Avendo ottimizzato il rapporto tra larghezza massima di cinghia e dimensioni del profilo, si possono ottenere i seguenti vantaggi:

- Alta velocità
- Bassa rumorosità
- Bassa usura

È stato, inoltre, utilizzato un sistema tale per cui la cinghia di trazione viene guidata all'interno del profilo garantendo un ottimo centraggio sulla puleggia e, quindi, una maggiore durata.

Carro

Il carro delle unità lineari Rollon serie ROBOT è in alluminio anodizzato superficialmente. Le dimensioni variano in relazione ai modelli. Il carro è costituito da due parti per consentire il passaggio di una cinghia di protezione. È dotato, inoltre, di apposite guarnizioni (spazzole) come ulteriore protezione.

Cinghia di protezione

Le unità lineari Rollon serie ROBOT sono dotate di una cinghia in poliuretano a protezione di tutte le parti interne del profilo dalla polvere e da corpi estranei. La cinghia è inserita nel profilo grazie a microcuscinetti alloggiati all'interno del carro. Questo sistema consente di mantenere la cinghia nella sua sede con valori di attrito volvente molto bassi.

Dati generali alluminio utilizzato: AL 6060

Composizione chimica [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurità
Resto	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15

Tab. 33

Caratteristiche fisiche

Densità	Modulo di elasticità	Coefficiente di dilatazione termica (20°-100°C)	Conducibilità termica (20°C)	Calore specifico (0°-100°C)	Resistività	Temp. di fusione
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Tab. 34

Caratteristiche meccaniche

Rm	Rp (02)	А	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

► Il sistema di movimentazione lineare

Il sistema di movimentazione lineare risulta determinante per la capacità di carico, la velocità e l'accelerazione massima. Nelle unità Rollon serie ROBOT vengono utilizzati due diversi sistemi:

ROBOT...SP con guide a ricircolo di sfere

- Due guide a ricircolo di sfere ad elevata capacità di carico vengono fissate in apposite sedi all'esterno del profilo di alluminio.
- Il carro dell'unità lineare è montato su quattro carrelli a ricircolo di sfere precaricati.
- I carrelli a ricircolo di sfere possono sopportare carichi nelle quattro direzioni principali grazie alle quattro corone di sfere.
- I quattro carrelli sono dotati di protezioni su entrambi i lati e, dove necessario, è possibile montare un ulteriore raschiatore per ambienti molto polverosi.
- I carrelli a ricircolo di sfere delle versioni SP sono inoltre dotati di una gabbia di ritenuta, che elimina il contatto "acciaio-acciaio" tra corpi volventi adiacenti ed evita disallineamenti degli stessi nei circuiti.
- Sui frontali dei carrelli a ricircolo di sfere sono montati dei serbatoi di lubrificante che erogano la giusta quantità di grasso al sistema allungando gli intervalli di manutenzione..

Il sistema sopra descritto consente di ottenere:

- Elevate velocità e accelerazioni
- Elevate capacità di carico
- Elevata momenti momenti ribaltanti ammissibili
- Bassi attriti
- Lunghissime durate
- Sistema esente da manutenzione (in base all'applicazione, consultare la sezione "Lubrificazione" a pag PLS-32)
- Bassa rumorosità

ROBOT...CE con guide a rotelle ad arco gotico

- Due barre in acciaio temperato con durezza 58/60 HRC (tolleranza: h6)
 vengono applicate al profilo nelle apposite sedi mediante cianfrinatura.
- Il carro è dotato di sei rotelle a due corone di sfere a contatto obliquo, con profilo esterno ad arco gotico che consente un ottimo accoppiamento con le barre in acciaio (tranne che per il robot 160).
- Le sei rotelle del carro sono montate su perni in acciaio, di cui due eccentrici indispensabili per le tarature ed il precarico del sistema (tranne che per il robot 160).
- Per mantenere pulite e lubrificate le piste di scorrimento vengono inseriti, alle estremità del carro, quattro feltri intrisi con grasso di adequata viscosità e relativo serbatoio.

Il sistema sopra descritto consente di ottenere:

- Buona precisione di posizionamento
- Ottima silenziosità
- Assenza di manutenzione (in base all'applicazione)

Sezione ROBOT SP

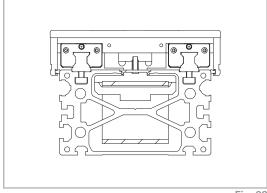
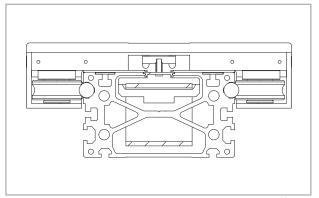
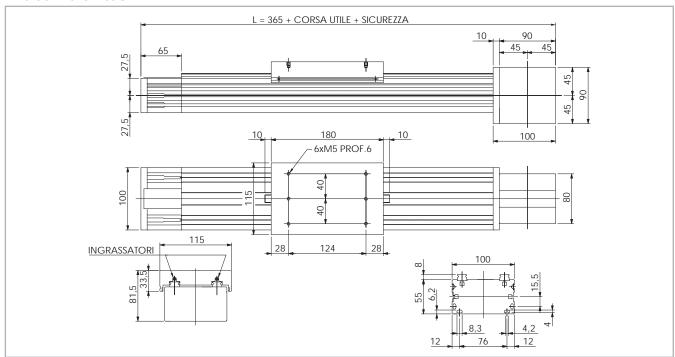


Fig. 22

Sezione ROBOT CE




Fig. 23

ROBOT 2C

Per entrambi i sistemi di movimentazione lineare SP e CE è disponibile la versione 2C, la quale prevede 2 carri indipendenti per un singolo attuatore.

ROBOT 100 SP

Dimensioni ROBOT 100 SP

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

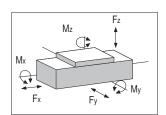
Fig. 24

Dati tecnici

	Tipo
	R0B0T 100 SP
Lunghezza corsa utile max. [mm]	5800
Ripetibilità max. di posizionamento [mm]*1	± 0,05
Velocità max. [m/s]	4,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	32 AT 5
Tipo di puleggia	Z 23
Diametro primitivo della puleggia [mm]	36,61
Spostamento carro per giro puleggia [mm]	115
Peso del carro [kg]	2,4
Peso corsa zero [kg]	4,5
Peso per ogni 100 mm di corsa utile [kg]	0,8
Coppia a vuoto [Nm]	1,3
Momento di inerzia delle pulegge [g mm²]	87200
*1) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato.	Tab. 36

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato.

Momenti d'inerzia del profilo di alluminio

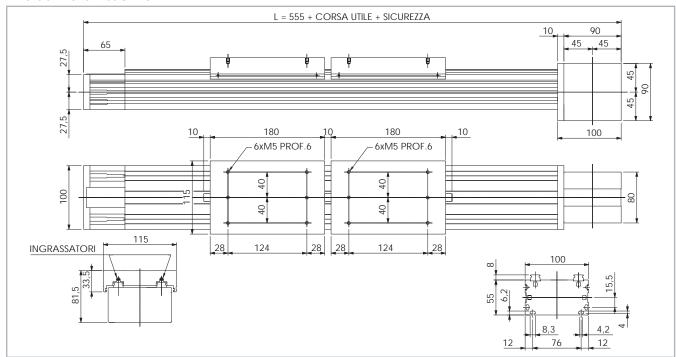

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 100	0,05	0,23	0,28
			Tab. 37

Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
R0B0T 100 SP	32 AT 5	32	0,105
			Tab. 38

Lunghezza della cinghia (mm) = 2 x L - 115


ROBOT 100 SP - Capacità di carico

Tipo	F [t	: X N]	F [1	: V]	F [I	: ^z N]	N [N		N [N	у	N [Ni	Z
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
R0B0T 100 SP	1176	739	25040	16800	25040	16800	851	571	1452	974	1452	974

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

▶ ROBOT 100 SP-2C

Dimensioni ROBOT 100 SP-2C

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 25

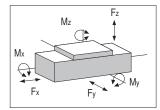
Dati tecnici

	Tipo
	R0B0T 100 SP-2C
Lunghezza corsa utile max. [mm]	5600
Ripetibilità max. di posizionamento [mm]*1	± 0,05
Velocità max. [m/s]	4,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	16 AT 5
Tipo di puleggia	Z 23
Diametro primitivo della puleggia [mm]	36,61
Spostamento carro per giro puleggia [mm]	115
Peso del carro [kg]	2,4
Peso corsa zero [kg]	8,0
Peso per ogni 100 mm di corsa utile [kg]	0,8
Coppia a vuoto [Nm]	1,3
Momento di inerzia delle pulegge [g mm²]	16220

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato.

Tab. 40

Momenti d'inerzia del profilo di alluminio

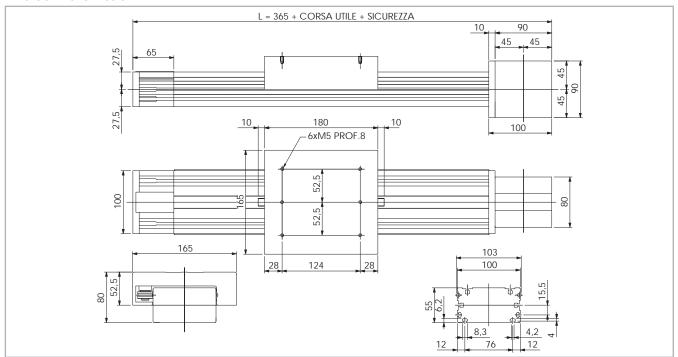

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 100	0,05	0,23	0,28
			Tab. 41

Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
R0B0T 100 SP-2C	16 AT 5	16	0,05
			Tab. 42

Lunghezza della cinghia (mm) = 2 x L - 115


ROBOT 100 SP-2C - Capacità di carico

Tipo	F [I	: X Nj	F [!	: Ň]	F [!	: V]	N [N	/l _x m]	N [N	(_y m]	N [N	ا m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
R0B0T 100 SP-2C	588	370	25040	16800	25040	16800	851	571	1452	974	1452	974

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

№ ROBOT 100 CE

Dimensioni ROBOT 100 CE

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

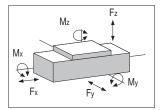
Fig. 26

Dati tecnici

	Tipo
	ROBOT 100 CE
Lunghezza corsa utile max. [mm]	6000
Ripetibilità max. di posizionamento [mm]*1	± 0,05
Velocità max. [m/s]	1,5
Accelerazione max. [m/s²]	1,5
Tipo di cinghia	32 AT 5
Tipo di puleggia	Z 23
Diametro primitivo della puleggia [mm]	36,61
Spostamento carro per giro puleggia [mm]	115
Peso del carro [kg]	3,4
Peso corsa zero [kg]	5,5
Peso per ogni 100 mm di corsa utile [kg]	0,8
Coppia a vuoto [Nm]	1,3
Momento di inerzia delle pulegge [g mm²]	87200

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato.

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 100	0,05	0,23	0,28
			Tab. 45

Cinghia di trazione

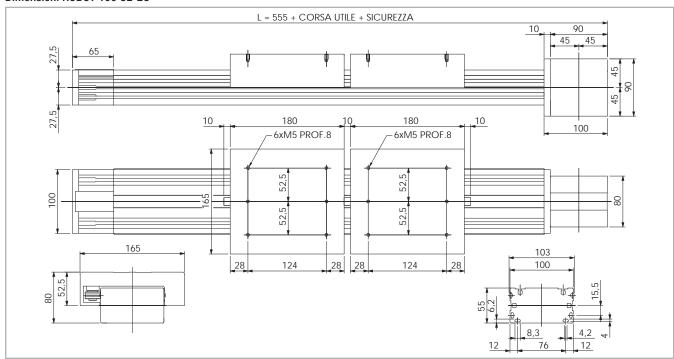
La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
ROBOT 100-CE	32 AT 5	32	0,105
			Tab. 46

Lunghezza della cinghia (mm) = 2 x L - 115

ROBOT 100 CE - Capacità di carico

Tipo	F [N	: X V]	F [I	: vj	F [l	: ^z N]	N [N	X	N [N	(_y m]	N [N	Z
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
ROBOT 100 CE	1176	907	3800	7340	2460	4080	120	198	160	265	250	477


Tab. 44

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

Tab. 47

▶ ROBOT 100 CE-2C

Dimensioni ROBOT 100 CE-2C

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

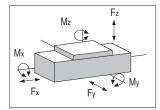
Fig. 27

Dati tecnici

	Tipo
	R0B0T 100 CE-2C
Lunghezza corsa utile max. [mm]	5800
Ripetibilità max. di posizionamento [mm]*1	± 0,05
Velocità max. [m/s]	1,5
Accelerazione max. [m/s²]	1,5
Tipo di cinghia	16 AT 5
Tipo di puleggia	Z 23
Diametro primitivo della puleggia [mm]	36,61
Spostamento carro per giro puleggia [mm]	115
Peso del carro [kg]	3,4
Peso corsa zero [kg]	10,5
Peso per ogni 100 mm di corsa utile [kg]	0,8
Coppia a vuoto [Nm]	1,3
Momento di inerzia delle pulegge [g mm²]	16220

 $^{^{\}star}$ 1) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato.

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]		
R0B0T 100	0,05	0,23	0,28		
			Tab. 49		

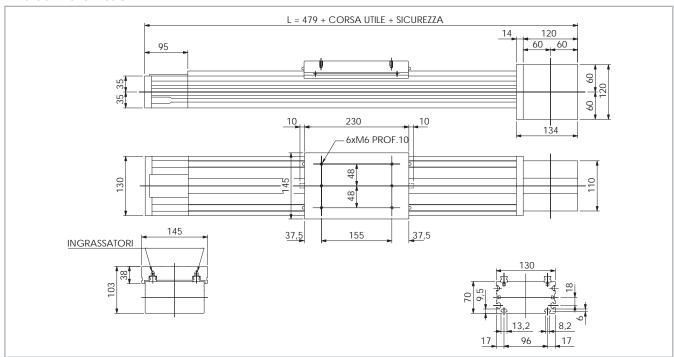
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
ROBOT 100 CE-2C	16 AT 5	16	0,05
			Tab. 50

Lunghezza della cinghia (mm) = 2 x L - 115

ROBOT 100 CE-2C - Capacità di carico


Tipo	F [!	: X Nj	F [I	: Ň]	F [!	: z N]	N [N	/l _x m]	N [N	l _y m]	N [N	(_z m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
R0B0T 100 CE-2C	588	454	3800	7340	2460	4080	120	198	160	265	250	477

Tab. 48

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

ROBOT 130 SP

Dimensioni ROBOT 130 SP

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

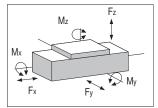
Fig. 28

Dati tecnici

	Tipo
	ROBOT 130 SP
Lunghezza corsa utile max. [mm]*1	6000
Ripetibilità max. di posizionamento [mm]*2	± 0,05
Velocità max. [m/s]	5,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	50 AT 10
Tipo di puleggia	Z 17
Diametro primitivo della puleggia [mm]	54,11
Spostamento carro per giro puleggia [mm]	170
Peso del carro [kg]	2,8
Peso corsa zero [kg]	9,1
Peso per ogni 100 mm di corsa utile [kg]	1,2
Coppia a vuoto [Nm]	2,7
Momento di inerzia delle pulegge [g mm²]	493200

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio


Tipo	_x [10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 130	0,15	0,65	0,79
			Tab. 53

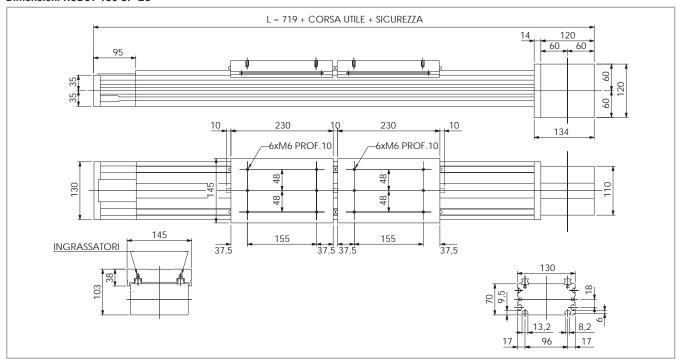
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
R0B0T 130 SP	50 AT 10	50	0,29
			Tab. 54

Lunghezza della cinghia (mm) = 2 x L - 103

ROBOT 130 SP - Capacità di carico


Tipo	F [N	: × V]	F [!	F, F _z M _x M _y [N] [Nm] [Nm]		X		(_y m]	M _z [Nm]			
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
R0B0T 130 SP	2775	1575	48400	29120	48400	29120	2323	1398	3170	1907	3170	1907

Tab. 52

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

▶ ROBOT 130 SP-2C

Dimensioni ROBOT 130 SP-2C

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

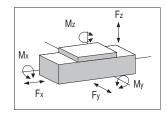
Fig. 29

Dati tecnici

	Tipo
	R0B0T 130 SP-2C
Lunghezza corsa utile max. [mm]*1	6000
Ripetibilità max. di posizionamento [mm]*2	± 0,05
Velocità max. [m/s]	5,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	25 AT 10
Tipo di puleggia	Z 17
Diametro primitivo della puleggia [mm]	54,11
Spostamento carro per giro puleggia [mm]	170
Peso del carro [kg]	2,8
Peso corsa zero [kg]	14,9
Peso per ogni 100 mm di corsa utile [kg]	1,2
Coppia a vuoto [Nm]	2,7
Momento di inerzia delle pulegge [g mm²]	196200

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 130	0,15	0,65	0,79
			Tab. 57

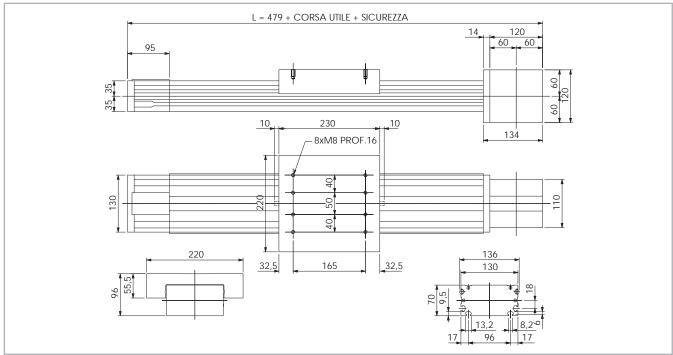
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
R0B0T 130 SP-2C	25 AT 10	25	0,16
			Tab. 58

Lunghezza della cinghia (mm) = 2 x L - 103

ROBOT 130 SP-2C - Capacità di carico


Tipo	F [1	: X V]	F [t	: V V]	F [N	: z V]	N [N	X	N [Ni	l m]	N [N	Z
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
R0B0T 130 SP-2C	1388	788	48400	29120	48400	29120	2323	1398	3170	1907	3170	1907

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

Tab. 56

ROBOT 130 CE

Dimensioni ROBOT 130 CE

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 30

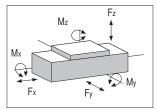
Dati tecnici

	Tipo
	ROBOT 130 CE
Lunghezza corsa utile max. [mm]*1	6000
Ripetibilità max. di posizionamento [mm]*2	± 0,05
Velocità max. [m/s]	1,5
Accelerazione max. [m/s²]	1,5
Tipo di cinghia	50 AT 10
Tipo di puleggia	Z 17
Diametro primitivo della puleggia [mm]	54,11
Spostamento carro per giro puleggia [mm]	170
Peso del carro [kg]	4,3
Peso corsa zero [kg]	10,3
Peso per ogni 100 mm di corsa utile [kg]	1,1
Coppia a vuoto [Nm]	2,7
Momento di inerzia delle pulegge [g mm²]	493200
*1) È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon	Tab. 60

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 130	0,15	0,65	0,79
			Tab. 61

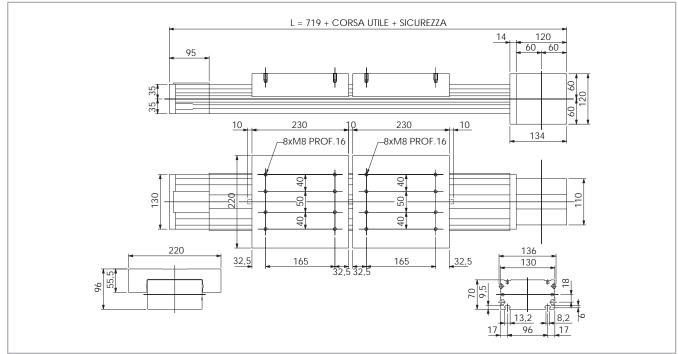

Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
ROBOT 130 CE	50 AT 10	50	0,29
			-,

Tab. 62

Lunghezza della cinghia (mm) = 2 x L - 103


ROBOT 130 CE - Capacità di carico

Tipo	F _x [N]		F _y [N]		F, F, M, [N] [Nm] [i		X		N [N	l _y m]	N [N	ا m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
ROBOT 130 CE	2775	2138	3800	17000	4760	8700	300	548	392	724	704	1410

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

▶ ROBOT 130 CE-2C

Dimensioni ROBOT 130 CE-2C

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

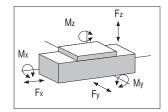
Fig. 31

Dati tecnici

	Tipo
	ROBOT 130 CE-2C
Lunghezza corsa utile max. [mm]*1	6000
Ripetibilità max. di posizionamento [mm]*2	± 0,05
Velocità max. [m/s]	1,5
Accelerazione max. [m/s²]	1,5
Tipo di cinghia	25 AT 10
Tipo di puleggia	Z 17
Diametro primitivo della puleggia [mm]	54,11
Spostamento carro per giro puleggia [mm]	170
Peso del carro [kg]	4,3
Peso corsa zero [kg]	17,4
Peso per ogni 100 mm di corsa utile [kg]	1,1
Coppia a vuoto [Nm]	2,7
Momento di inerzia delle pulegge [g mm²]	196200
1) È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon	Tab. 64

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio

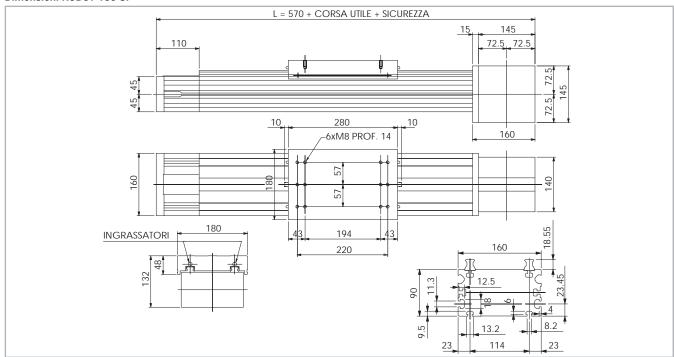

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
R0B0T 130	0,15	0,65	0,79
			Tab. 65

Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
ROBOT 130 CE-2C	25 AT 10	25	0,16
			Tab. 66

Lunghezza della cinghia (mm) = 2 x L - 103


ROBOT 130 CE-2C - Capacità di carico

Tipo	F [1	: X V]	F [t	: V V]	F [1	: z V]	N [N	l m]	N [N	l m]	N [N	/ _z m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
ROBOT 130 CE-2C	1388	1069	3800	17000	4760	8700	300	548	392	724	704	1410

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

ROBOT 160 SP

Dimensioni ROBOT 160 SP

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

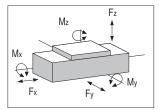
Fig. 32

Dati tecnici

	Tipo
	ROBOT 160 SP
Lunghezza corsa utile max. [mm]*1	6000
Ripetibilità max. di posizionamento [mm]*2	± 0,05
Velocità max. [m/s]	5,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	70 AT 10
Tipo di puleggia	Z 20
Diametro primitivo della puleggia [mm]	63,66
Spostamento carro per giro puleggia [mm]	200
Peso del carro [kg]	5,3
Peso corsa zero [kg]	21
Peso per ogni 100 mm di corsa utile [kg]	1,9
Coppia a vuoto [Nm]	4,5
Momento di inerzia delle pulegge [g mm²]	1,202 · 10 ⁶

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
R0B0T 160	0,37	1,51	1,88
			Tab. 69

Cinghia di trazione

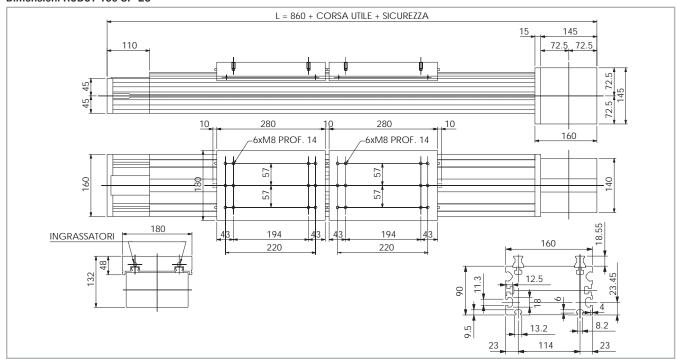
La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
R0B0T 160 SP	70 AT 10	70	0,41
			Tab. 70

Lunghezza della cinghia (mm) = 2 x L - 130

ROBOT 160 SP - Capacità di carico

Tipo	F _x [N]		F [1	F, [N] [: ^z N]	M _x [Nm]		N [N	l _y m]	N [N	/ _z m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
R0B0T 160 SP	4662	2772	86800	69600	86800	69600	4935	3957	6901	5533	6901	5533


Tab. 68

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

Tab. 71

ROBOT 160 SP-2C

Dimensioni ROBOT 160 SP-2C

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

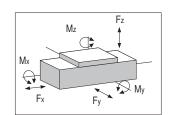
Fig. 33

Dati tecnici

	Tipo
	R0B0T 160 SP-2C
Lunghezza corsa utile max. [mm]*1	6000
Ripetibilità max. di posizionamento [mm]*2	± 0,05
Velocità max. [m/s]	5,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	32 AT 10
Tipo di puleggia	Z 19
Diametro primitivo della puleggia [mm]	60,48
Spostamento carro per giro puleggia [mm]	190
Peso del carro [kg]	5,3
Peso corsa zero [kg]	21
Peso per ogni 100 mm di corsa utile [kg]	1,9
Coppia a vuoto [Nm]	4,5
Momento di inerzia delle pulegge [g mm²]	210300

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]	[10 ⁷ mm ⁴]
R0B0T 160	0,37	1,51	1,88
			Tab. 73

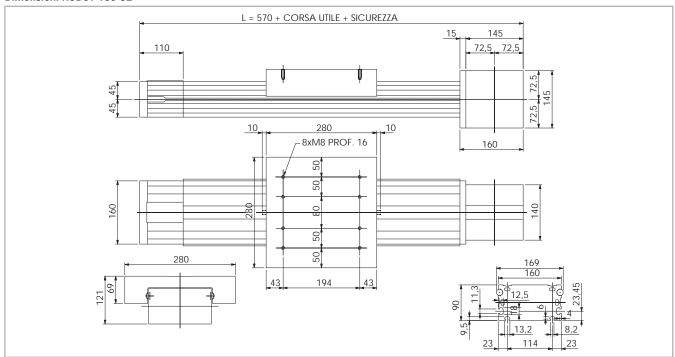
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
R0B0T 160 SP-2C	32 AT 10	32	0,185
			Tab. 74

Lunghezza della cinghia (mm) = 2 x L - 130

ROBOT 160 SP - Capacità di carico


Tipo	F _x [N]		F, [N]		F _z [N]		N [N	M _x [Nm]		l _y m]	N [N	N _z m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
ROBOT 160 SP-2C	2013	1170	86800	69600	86800	69600	4935	3957	6901	5533	6901	5533

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

Tab. 72

ROBOT 160 CE

Dimensioni ROBOT 160 CE

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

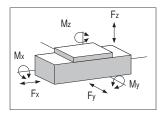
Fig. 34

Dati tecnici

	Tipo
	ROBOT 160 CE
Lunghezza corsa utile max. [mm]*1	6000
Ripetibilità max. di posizionamento [mm]*2	± 0,05
Velocità max. [m/s]	1,5
Accelerazione max. [m/s²]	1,5
Tipo di cinghia	70 AT 10
Tipo di puleggia	Z 20
Diametro primitivo della puleggia [mm]	63,66
Spostamento carro per giro puleggia [mm]	200
Peso del carro [kg]	8,6
Peso corsa zero [kg]	23
Peso per ogni 100 mm di corsa utile [kg]	2,2
Coppia a vuoto [Nm]	4,5
Momento di inerzia delle pulegge [g mm²]	1,202 · 10 ⁶
1) È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon	Tab. 76

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio

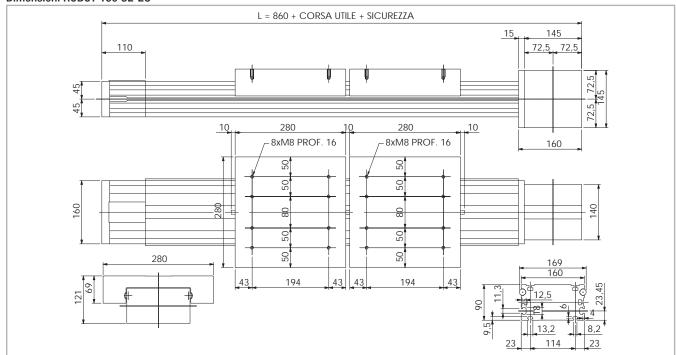

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]
R0B0T 160	0,37	1,51	1,88
			Tab. 77

Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
ROBOT 160 CE	70 AT 10	70	0,41
			Tab. 78

Lunghezza della cinghia (mm) = 2 x L - 130


ROBOT 160 CE - Capacità di carico

Tipo	F _x [N]		F [1	: V]	F [I	: z N]	N [N	l _x m]	N [N	(_y m]	N [N	/ _z m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
ROBOT 160 CE	4662	3717	15800	33600	7600	15300	580	1170	820	1650	1710	3630

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

▶ ROBOT 160 CE-2C

Dimensioni ROBOT 160 CE-2C

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

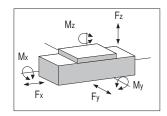
Fig. 35

Dati tecnici

	Tipo
	R0B0T 160 CE-2C
Lunghezza corsa utile max. [mm]*1	6000
Ripetibilità max. di posizionamento [mm]*2	± 0,05
Velocità max. [m/s]	1,5
Accelerazione max. [m/s²]	1,5
Tipo di cinghia	32 AT 10
Tipo di puleggia	Z 19
Diametro primitivo della puleggia [mm]	60,48
Spostamento carro per giro puleggia [mm]	190
Peso del carro [kg]	8,6
Peso corsa zero [kg]	32
Peso per ogni 100 mm di corsa utile [kg]	2,2
Coppia a vuoto [Nm]	4,5
Momento di inerzia delle pulegge [g mm²]	210300

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]		
R0B0T 160	0,37	1,51	1,88		
			Tab. 81		

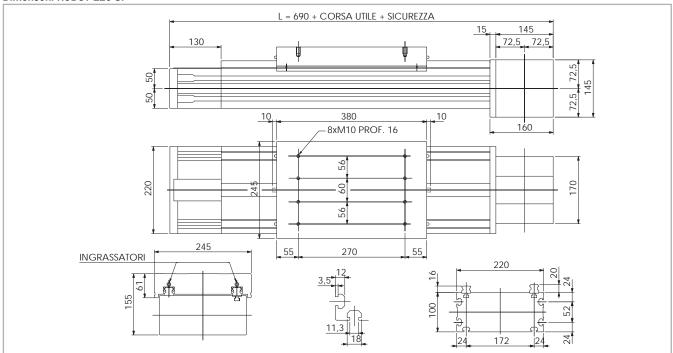
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
ROBOT 160 CE-2C	32 AT 10	32	0,185
			Tab. 82

Lunghezza della cinghia (mm) = 2 x L - 130

ROBOT 160 CE-2C - Capacità di carico


Tipo	F _x [N]		F, F, [N]		M _x [Nm]		M _y [Nm]		M _z [Nm]			
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
ROBOT 160 CE-2C	2013	1605	15800	33600	7600	15300	580	1170	820	1650	1710	3630

Tab. 80

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

ROBOT 220 SP

Dimensoni ROBOT 220 SP

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

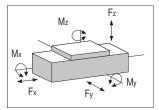
Fig. 36

Dati tecnici

	Tipo
	ROBOT 220 SP
Lunghezza corsa utile max. [mm]*1	6000
Ripetibilità max. di posizionamento [mm]*2	± 0,05
Velocità max. [m/s]	5,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	100 AT 10
Tipo di puleggia	Z 25
Diametro primitivo della puleggia [mm]	79,58
Spostamento carro per giro puleggia [mm]	250
Peso del carro [kg]	14,4
Peso corsa zero [kg]	41
Peso per ogni 100 mm di corsa utile [kg]	2,5
Coppia a vuoto [Nm]	6,4
Momento di inerzia delle pulegge [g mm²]	4,114 · 10 ⁶

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio


Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]
R0B0T 220	0,65	3,26	3,92
			Tab. 85

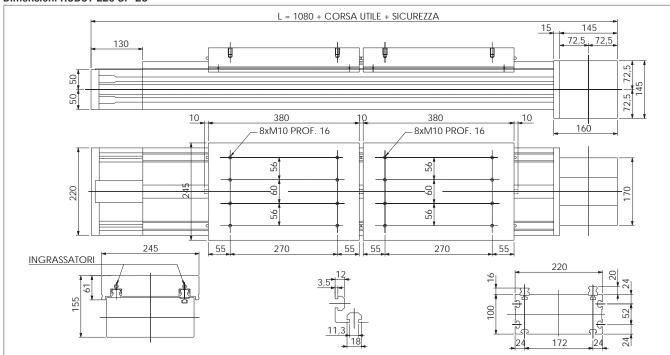
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
R0B0T 220 SP	100 AT 10	100	0,58
			Tab. 86

Lunghezza della cinghia (mm) = 2 x L - 120

ROBOT 220 SP - Capacità di carico


Tipo	F _x [N]		F _y [N]		F [t	Δ		M _x [Nm]		M _y [Nm]		M _z [Nm]	
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	
R0B0T 220 SP	8510	5520	158000	110000	158000	110000	13588	9460	17696	12320	17696	12320	

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

Tab. 84

▶ ROBOT 220 SP-2C

Dimensioni ROBOT 220 SP-2C

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 37

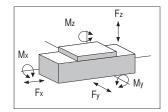
Dati tecnici

	Tipo
	R0B0T 220 SP-2C
Lunghezza corsa utile max. [mm]*1	6000
Ripetibilità max. di posizionamento [mm]*2	± 0,05
Velocità max. [m/s]	5,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	40 AT 10
Tipo di puleggia	Z 25
Diametro primitivo della puleggia [mm]	79,58
Spostamento carro per giro puleggia [mm]	250
Peso del carro [kg]	13,3
Peso corsa zero [kg]	46
Peso per ogni 100 mm di corsa utile [kg]	2,5
Coppia a vuoto [Nm]	6,4
Momento di inerzia delle pulegge [g mm²]	$2,026 \cdot 10^6$

^{*1)} È possibile realizzare corse fino a 11000 mm tramite speciali giunzioni Rollon *2) La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato

Momenti d'inerzia del profilo di alluminio

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]
R0B0T 220	0,65	3,26	3,92
			Tab. 89


Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo	Largh.	Peso
	cinghia	cinghia [mm]	kg/m
R0B0T 220 SP-2C	40 AT 10	40	0,23

Tab. 90

Lunghezza della cinghia (mm) = 2 x L - 120

ROBOT 220 SP-2C - Capacità di carico

Tipo	Гіро		F [I	F _y [N]		F _z [N]		M _x [Nm]		M _y [Nm]		M _z [Nm]	
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	
R0B0T 220 SP-2C	3404	2208	158000	110000	158000	110000	13588	9460	17696	12320	17696	12320	

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

pulegge [g mm²] 2,026 · 10°
200 mm tramite speciali giunzioni Rollon Tab. 88

Lubrificazione

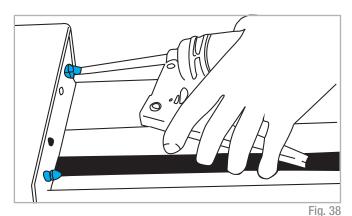
Unità lineari SP con guide a ricircolo di sfere

Nelle versioni SP vengono montate guide a ricircolo di sfere autolubrificanti.

I carrelli a ricircolo di sfere delle versioni SP sono inoltre dotati di una gabbia di ritenuta, che elimina il contatto "acciaio-acciaio" tra corpi volventi adiacenti ed evita disallineamenti degli stessi nei circuiti.

Sui frontali dei carrelli a ricircolo di sfere sono stati installati dei serbatoi di lubrificante che rilasciano la giusta quantità di grasso nelle zone ove le sfere sopportano i carichi applicati. Questo sistema garantisce lunghi intervalli di manutenzione: per la versione SP ogni 5000 km o 1 anno

d'uso in base al valore raggiunto per primo. In caso di elevate dinamiche del sistema e/o di elevati carichi applicati, contattare Rollon per le necessarie verifiche.


Unità lineari CE con guide a rotelle

Le unità lineari con guide a rotelle sono dotate di un sistema di lubrificazione continuativa. Quattro feltri, intrisi di grasso di adeguata viscosità con relativi serbatoi, garantiscono una durata di ca. 6000 km senza rilubrificazione. Per un'eventuale rilubrificazione per ottenere durate superiori, contattare i nostri uffici

Tipo	Unità: [g]
R0B0T 100 SP	1
ROBOT 130 SP	0,8
R0B0T 160 SP	1,4
ROBOT 220 SP	2,8
	Tob 02

Tab. 92

- Inserire il beccuccio erogatore negli appositi ingrassatori.
- Tipo di lubrificante: grasso a base di sapone di litio della classe NLGI 2.
- Per applicazioni intense o difficili condizioni ambientali, è necessaria una lubrificazione più frequente.
 - Per maggiori informazioni rivolgersi a Rollon

Riduttori epicicloidali

Montaggio a destra o a sinistra rispetto alla testata motrice

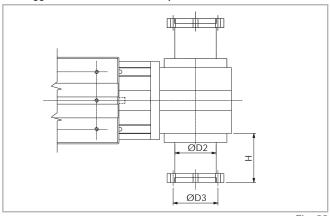
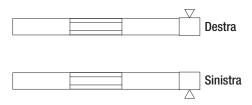
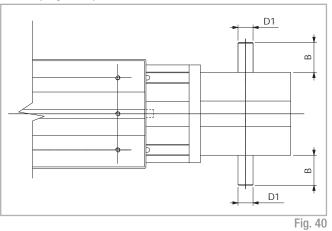



Fig. 39

Le unità lineari della serie ROBOT possono essere realizzate con diversi tipi di trasmissione del moto. Su tutte le versioni la puleggia motrice viene accoppiata all'albero del riduttore mediante calettatori conici. Questo sistema garantisce nel tempo la totale assenza di giochi.

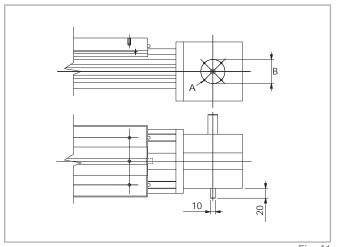

Versioni con riduttore epicicloidale

I riduttori epicicloidali vengono utilizzati per applicazioni di robotica, automazione e manipolazione che richiedono alta dinamica, cicli stressanti con carichi e precisioni elevate. Sono disponibili modelli standard con gioco da 3' a 15' e con rapporto di riduzione da 1:3 a 1:1000. Per montaggio di riduttori epicicloidali fuori standard contattare i nostri uffici.

Alberi sporgenti

Albero sporgente tipo AS

Unità	Tipo di albero	В	D1
R0B0T 100	AS 15	35	15h7
R0B0T 130	AS 20	40	20h7
R0B0T 160	AS 25	50	25h7
R0B0T 220	AS 25	50	25h7


Tab. 93

Posizione dell'albero sporgente a destra o a sinistra rispetto alla testata motrice.

Unità	Tipo di albero	Codice testata AS a sinistra	Codice testata As a destra	Codice testata doppio AS
R0B0T 100	AS 15	1E	1C	1A
ROBOT 130	AS 20	1E	1C	1A
R0B0T 160	AS 25	1E	1C	1A
R0B0T 220	AS 25	1E	1C	1A

Tab. 94

Albero sporgente tipo AE 10 per montaggio encoder + AS

Unità	А	В	Codice testata AS a destra + AE	Codice testata AS a sinistra + AE
ROBOT 100	4xM4	Ø49	1G	11
R0B0T 130	4xM4	Ø79	1G	11
ROBOT 160	4xM4	Ø76	1G	11
R0B0T 220	4xM4	Ø76	1G	11

Tab. 95

Posizione dell'albero sporgente per montaggio encoder a destra o a sinistra rispetto alla testata motrice.

Albero cavo

Albero cavo tipo AC

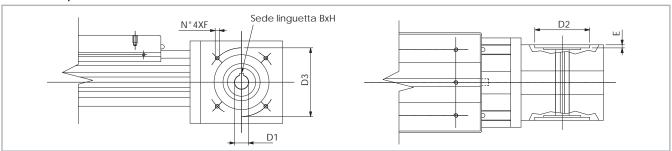


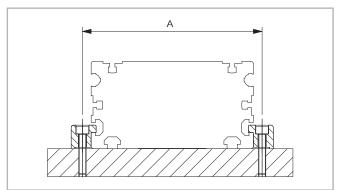
Fig. 42

Unità mm

Applicabile su unità	Tipo di albero	D1	D2	D3	Е	F	Linguetta B x H	Codice testata
R0B0T 100	AC19	19H7	80	100	3	M6	6 x 6	2A
R0B0T 130	AC19	19H7	80	100	4,5	M6	6 x 6	2A
R0B0T 130	AC20	20H7	80	100	4,5	M6	6 x 6	20
R0B0T 130	AC25	25H7	110	130	4,5	M8	8 x 7	2E
R0B0T 160	AC25	25H7	110	130	4,5	M8	8 x 7	2A
R0B0T 160	AC32	32H7	130	165	4,5	M10	10 x 8	20
R0B0T 220	AC25	25H7	110	130	4,5	M8	8 x 7	2A
R0B0T 220	AC32	32H7	130	165	4,5	M10	10 x 8	20

Tab. 96

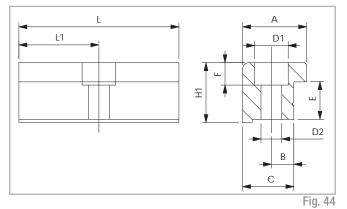
Per il montaggio dei riduttori standard scelti da Rollon è prevista una flangia di connessione (opzionale).


Per ulteriori informazioni contattare i nostri uffici.

Accessori

Fissaggio con staffe

Le unità lineari Rollon serie ROBOT possono essere montate in qualsiasi posizione grazie ai loro sistemi di traslazione che consentono all'unità di sopportare carichi in qualsiasi direzione.


Per il fissaggio delle unità si consiglia di usare le apposite cave esterne del profilo di alluminio, come nei disegni sotto riportati.

Unità	А
R0B0T 100	112
R0B0T 130	144
R0B0T 160	180
R0B0T 220	240
	Tab. 97

Fig. 43

Staffa di fissaggio

Blocchetto in alluminio anodizzato per il fissaggio delle unità lineari tramite le cave laterali del profilo.

Fissaggio con dadi a T

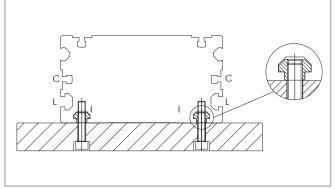
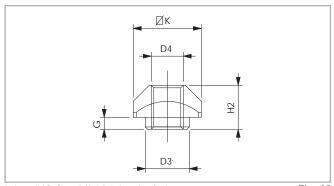


Fig. 45

Attenzione:


Non fissare le unità lineari tramite le testate alle estremità del profilo.

Dimensioni (mm)

Unità	А	В	С	Е	F	D1	D2	H1	L	L1	Codice
ROBOT 100	20	6	16	10	5,5	9,5	5,3	14	35	17,5	1000958
ROBOT 130	20	7	16	12,7	7	10,5	6,5	18,7	50	25	1001061
ROBOT 160	36,5	10	31	18,5	10,5	16,5	10,5	28,5	100	50	1001233
R0B0T 220	36,5	10	31	18,5	10,5	16,5	10,5	28,5	100	50	1001233

Tab. 98

Dadi a T

L=Laterali / C=Centrali / I=Inferiori - vedere fig.45

Fig. 46

Dadi in acciaio da utilizzare nelle cave del profilo.

Dimensioni (mm)

	,						
Unità		D3	D4	G	H2	K	Codice
R0B0T 100	L-I	-	M4	-	3,4	8	1001046
R0B0T 130	С	-	M3	-	4	6	1001097
R0B0T 130	L-I	8	M6	3,3	8,3	13	1000043
R0B0T 160	C	-	M6	-	5,8	13	1000910
R0B0T 160	1	8	M6	3,3	8,3	13	1000043
R0B0T 160	L	11	M8	2,8	10,8	17	1000932
R0B0T 220	L-I	11	M8	2,8	10,8	17	1000932

Proximity ROBOT...SP

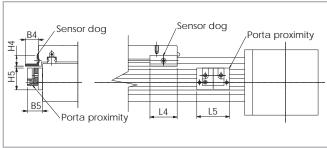


Fig. 47

Porta proximity

Blocchetto in alluminio anodizzato, colore rosso, completo di dadi a "T" per il fissaggio nelle cave del profilo.

Sensor dog

Profilo a "L" in ferro zincato montato sul carro ed utilizzato per la lettura da parte del proximity.

Dimensioni (mm)

Unità	В4	B5	L4	L5	H4	H5	Tipo proximity	Codice sensor dog	Codice porta proximity
ROBOT SP 100	9,5	20	25	45	12	25	Ø 8	G000268	G000092
ROBOT SP 130	21	28	50	60	20	40	Ø 12	G000269	G000126
ROBOT SP 160	21	28	50	64	20	40	Ø 12	G000269	G000123
ROBOT SP 220	21	28	50	70	20	40	Ø 12	G000269	G000207

Tab. 100

Attenzione:

Utilizzando i soffietti non è possibile montare i porta Proximity nel profilo in alluminio.

Proximity ROBOT...CE

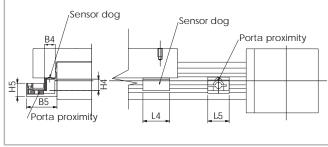


Fig. 48

Porta proximity

Blocchetto in alluminio anodizzato, colore rosso, completo di dadi a "T" per il fissaggio nelle cave del profilo.

Sensor dog

Profilo a "L" in ferro zincato montato sul carro ed utilizzato per la lettura da parte del proximity.

Dimensioni (mm)

Unità	В4	B5	L4	L5	Н4	Н5	Tipo proximity	Codice sensor dog	Codice porta proximity
ROBOT CE 100	9,5	47	25	29	12	20	Ø 8	G000268	G000756
ROBOT CE 130	21	57	50	40	20	25	Ø 12	G000269	G000125
ROBOT CE 160	21	57	50	40	20	28,5	Ø 12	G000269	G000124

Tab. 101

Attenzione:

Utilizzando i soffietti non è possibile montare i porta Proximity nel profilo in alluminio.

Protezioni

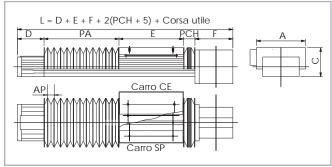


Fig. 49

Protezioni standard

Le unità lineari Rollon serie ROBOT sono dotate di una cinghia in poliuretano a protezione di tutte le parti interne del profilo, dalla polvere e da corpi estranei. La cinghia è inserita nel profilo grazie a microcuscinetti alloggiati all'interno del carro. Questo sistema consente di mantenere la cinghia, durante la traslazione del carro, nella sua sede con valori di attrito volvente molto bassi.

Dimensioni (mm)

Unità	А	С	D	E	F
R0B0T 130	174	103	95	230	135
R0B0T 160	204	131,5	110	280	160
R0B0T 220	275	149,5	130	380	160

Tab. 102

Protezione delle guide a ricircolo di sfere

I carrelli delle guide a ricircolo di sfere sono dotati di protezioni su entrambi i lati e, dove necessario, è possibile montare un ulteriore raschiatore per ambienti molto polverosi.

Protezioni speciali

Per l'utilizzo di unità lineari in ambienti particolarmente critici esiste la possibilità di corredare le unità lineari serie ROBOT di un soffietto in aggiunta alla protezione standard già esistente. Il soffietto viene fissato al carro e alle estremità dell'unità lineare tramite un nastro Velcro. Questo sistema rende più semplice il montaggio e lo smontaggio per eventuali sostituzioni.

La lunghezza totale delle unità lineari (L) varierà:

Vedi fig. 49

Materiale standard: Nylon spalmato poliuretano termosaldato

Materiali su richiesta: Nylon spalmato PVC, fibra di vetro, acciaio INOX

Attenzione: L'utilizzo dei soffietti non permette il montaggio dei porta proximity nel profilo di alluminio.

Kit di montaggio

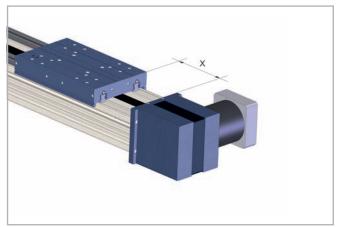
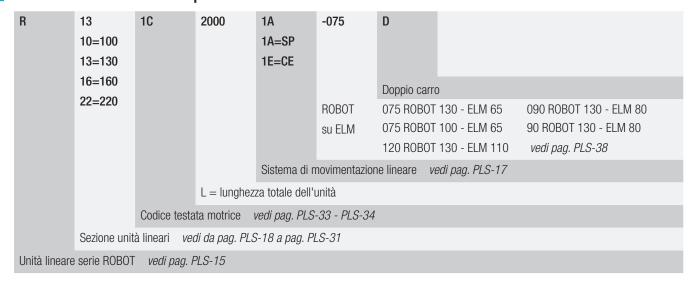


Fig. 50

Fig. 51


Per l'assemblaggio diretto delle unità lineari ROBOT con altri attuatori, Rollon propone dei kit di montaggio dedicati (staffe), per poter fissare le staffe le parti finali dell'attuatore devono essere prive di guide. La tabella sotto riportata fornisce i codici dei kit di montaggio, le combinazioni previste e la lunghezza del tratto senza guide ad ogni estremità.

	Kit	Codice	X Parte senza guide ai due estremi (mm)
	R0B0T 100 - ELM 65	G000205	75
	R0B0T 100 - R0B0T 130	G000201	140
1-	ROBOT 100 - ECO 80	G000203	90
	R0B0T 100 - E-SMART 50	G000642	60
J-	ROBOT 130 - ELM 65	G000196	75
	R0B0T 130 - ELM 80	G000195	90
	R0B0T 130 - R0B0T 130	G000197	140
	R0B0T 130 - R0B0T 160	G000198	170
	ROBOT 160 - ELM 80	G000204	90
1-	ROBOT 160 - ELM 110	G000452	120
	ROBOT 160 - ROBOT 160	G000202	170
	R0B0T 160 - R0B0T 220	G000202	230
1-	R0B0T 220 - ELM 110	G000199	120
•			Tab. 103

Codice di ordinazione

Codice di identificazione per le unità lineari ROBOT

Per creare i codici identificativi per i prodotti Actuator Line, è possibile visitare: http://configureactuator.rollon.com

Serie SC / ~

Descrizione serie SC

Fig. 52

SC

Gli attuatori lineari della serie SC nascono per soddisfare le esigenze di movimentazione verticale nelle applicazioni a portale o per applicazioni dove il profilo in alluminio deve essere in movimento ed il carro deve rimanere fisso.

Composta da tre taglie con sezioni da 65 a 160 mm rappresenta il sistema più rigido, nell'ambito delle Unità Lineari, per realizzare un asse "Z", grazie all'adozione di profili autoportanti e all'utilizzo di due guide contrapposte.

Gli attuatori lineari SC sono stati progettati per carichi pesanti e applicazioni con un numero di cicli elevato.

Sono stati inoltre specificatamente progettati e configurati per essere assemblati con gli attuatori della serie ROBOT senza l'ausilio di ulteriori elementi.

Versione anti-corrosione

Tutti gli attuatori lineari della serie Plus System sono disponibili anche nella versione anti-corrosione, con elementi in acciaio inossidabile, per applicazioni in ambienti difficili e/o sottoposti a frequenti lavaggi.

Le Unità Lineari Plus System della serie anti-corrosione, sono realizzate utilizzando estrusi d'alluminio Anticorodal 6060 e 6082 anodizzati, sui quali sono montati cuscinetti, guide lineari, bulloneria e componenti in acciaio INOX AISI 303 e 404C a bassissimo contenuto di carbonio, che evitano o ritardano l'insorgere di corrosione dovuta alla presenza di umidità negli ambienti d'utilizzo delle unità stesse.

Speciali trattamenti superficiali senza deposito, uniti ad una lubrificazione realizzata con grassi vegetali alimentari biologici, permettono di utilizzare gli attuatori lineari anticorrosione anche in applicazioni molto sensibili e delicate quali quelle alimentari e farmaceutiche, ove l'inquinamento del prodotto manipolato è assolutamente vietato.

- Elementi interni in acciaio inossidabile
- Estrusi d'alluminio Anticorodal 6060 e 6082 anodizzati
- Guide lineari, bulloneria e componenti in acciaio INOX AISI 303 e 404C a bassissimo contenuto di carbonio
- Lubrificazione con grassi vegetali alimentari biologici

I componenti

Profilo in alluminio

I profili autoportanti usati per le unità lineari Rollon serie SC sono stati studiati e realizzati in collaborazione con aziende leader del settore al fine di ottenere estrusi che riescano a coniugare doti di elevata resistenza meccanica a un peso contenuto. Il materiale impiegato è lega di alluminio 6060 anodizzato superficialmente ed estruso con tolleranze sulle dimensioni conformi alle norme EN 755-9. Gli estrusi, inoltre, sono dotati di cave laterali per un facile montaggio degli accessori (pattino per proximity, ecc.). L'interno del profilo consente il passaggio di cavi per alimentazione elettrica e/o tubi per applicazioni pneumatiche (mano di presa, ecc.).

Cinghia di trazione

Nelle unità lineari Rollon serie SC vengono usate cinghie in poliuretano con profilo del dente tipo AT e cavi in acciaio. Questa categoria di cinghie per trasmissione moto risulta ottimale per l'impiego nelle unità lineari in quanto si rivela la più efficace in presenza di alte trazioni, spazi contenuti e ove sia richiesta una bassa rumorosità. La combinazione con le pulegge

a gioco zero rende possibile un movimento alternato senza gioco. Avendo ottimizzato il rapporto tra larghezza massima di cinghia e dimensioni del profilo si possono ottenere le seguenti prestazioni:

- Alta velocità
- Bassa rumorosità
- Bassa usura

Carro

Il carro è una struttura avvolgente e contiene l'intero sistema di trasmissione costituito da una puleggia motrice e due pulegge di rinvio. Le parti esterne sono in alluminio anodizzato. Le dimensioni variano in corrispondenza delle diverse tipologie. Per un semplice e rapido montaggio della serie SC si può utilizzare una delle due predisposizioni indicate a pag. PLS-48. Il carro, inoltre, è dotato di apposite guarnizioni a spazzola, inserite nelle parti frontali, come ulteriore protezione.

Dati generali alluminio utilizzato: AL 6060

Composizione chimica [%]

Al	Mg	Si	Fe	Mn	Zn	Cu	Impurità
Resto	0,35-0,60	0,30-0,60	0,30	0,10	0,10	0,10	0,05-0,15
							Tab. 104

Caratteristiche fisiche

Densità	Modulo di elasticità	Coefficiente di dilatazione termica (20°-100°C)	Conducibilità termica (20°C)	Calore specifico (0°-100°C)	Resistività	Temp. di fusione
kg	kN	10-6	W	J		
					Ω . m . 10 ⁻⁹	°C
dm ³	mm²	K	m . K	kg . K		
2,7	69	23	200	880-900	33	600-655

Tab. 105

Caratteristiche meccaniche

Rm	Rp (02)	A	НВ
N — mm²	N — mm²	%	_
205	165	10	60-80

Il sistema di movimentazione lineare

Il sistema di movimentazione lineare risulta determinante per capacità di carico, velocità e accelerazione massima. Nelle unità Rollon serie SC viene usato un sistema con guide a ricircolo di sfere:

Serie SC con guide a ricircolo di sfere

- Due guide a ricircolo di sfere ad elevata capacità di carico vengono fissate in due apposite sedi all'esterno del profilo di alluminio.
- Il carro dell'unità lineare è montato su quattro carrelli a ricircolo di sfere precaricati con gabbia di ritenuta in plastica.
- I carrelli a ricircolo di sfere possono sopportare carichi nelle quattro direzioni principali grazie alle quattro corone di sfere.
- I quattro carrelli sono dotati di protezioni su entrambi i lati e, dove necessario, è possibile montare un'ulteriore raschiatore per ambienti molto polverosi.
- Sui frontali dei carrelli a ricircolo di sfere sono installati dei serbatoi di lubrificante che erogano la giusta quantità di grasso al sistema, allungando gli intervalli di manutenzione.

Il sistema sopra descritto consente di ottenere:

- Elevate velocità e accelerazioni
- Elevate capacità di carico
- Elevati momenti ribaltanti ammissibili
- Bassi attriti
- Lunghissime durate
- Bassa rumorosità
- Assenza di manutenzione (in base all'applicazione)

Sezione SC

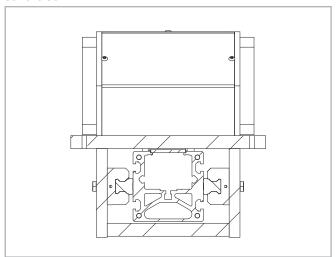
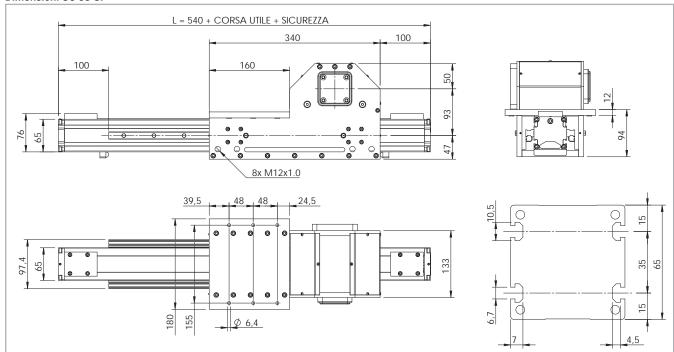



Fig. 53

SC 65 SP

Dimensioni SC 65 SP

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

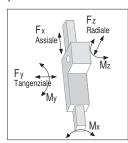
Fig. 54

Dati tecnici

	Tipo
	SC 65 SP
Lunghezza corsa utile max. [mm]	1500
Ripetibilità max.di posizionamento [mm]*1	± 0,05
Velocità max.di traslazione [m/s]	5,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	32 AT 5
Tipo di puleggia	Z 32
Diametro primitivo della puleggia [mm]	50,93
Spostamento carro per giro puleggia [mm]	160
Peso del carro [kg]	7,8
Peso corsa zero [kg]	11,6
Peso per ogni 100 mm di corsa utile [kg]	0,7
Coppia a vuoto [Nm]	1,3

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato.

Momenti d'inerzia del profilo di alluminio


Tipo	[10 ⁷ mm ⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
SC 65	0,06	0,09	0,15
			Tab. 108

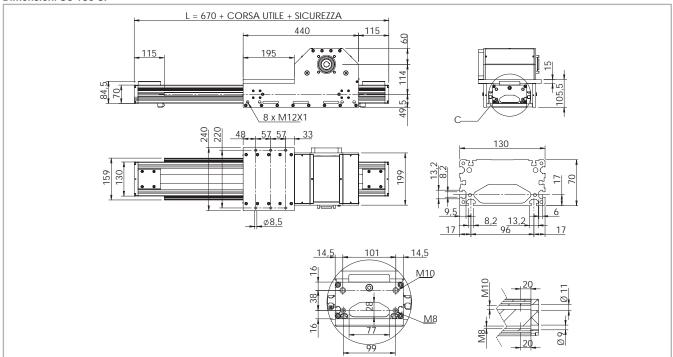
Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo cinghia	Largh. cinghia [mm]	Peso kg/m
SC 65	32 AT 5	32	0,105
			Tab. 109

Lunghezza della cinghia (mm) = L + 85

SC 65 SP - Capacità di carico


Tipo	F [1	: X)]	F [t	: V V	F [1	: ^z N]	N [N	(_x m]	N [N:	l _y m]	N [N	ا _ی m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
SC 65 SP	1344	883	48400	29120	48400	29120	1573	946	5808	3494	5808	3494

Tab. 107

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

SC 130 SP

Dimensioni SC 130 SP

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

Fig. 55

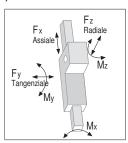
Dati tecnici

	Tipo
	SC 130 SP
Lunghezza corsa utile max. [mm]	2000
Ripetibilità max.di posizionamento [mm]*1	± 0,05
Velocità max.di traslazione [m/s]	5,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	50 AT 10
Tipo di puleggia	Z 20
Diametro primitivo della puleggia [mm]	63,66
Spostamento carro per giro puleggia [mm]	200
Peso del carro [kg]	13,5
Peso corsa zero [kg]	23
Peso per ogni 100 mm di corsa utile [kg]	1,4
Coppia a vuoto [Nm]	3

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato.

Momenti d'inerzia del profilo di alluminio

Tipo	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
SC 130	0,15	0,65	0,79
			Tab. 112


Cinghia di trazione

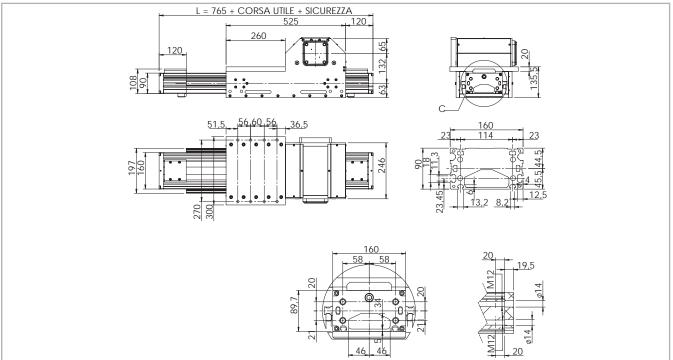
La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo	Largh.	Peso	
	cinghia	cinghia [mm]	kg/m	
SC 130	50 AT 10	50	0,209	

Tab. 113

Lunghezza della cinghia (mm) = L + 101

SC 130 SP - Capacità di carico


Tipo	F [1	: N N	F [!	: V V	F [t	: ^z N]	N [N	A	N [N	V	N [N	ا _ی m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
SC 130 SP	3330	1980	48400	29120	48400	29120	3073	1849	8155	4907	8155	4907

Tab. 111

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

SC 160 SP

Dimensioni SC 160 SP

^{*} La lunghezza della corsa di sicurezza viene fornita su richiesta specifica in base alle esigenze del cliente.

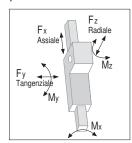
Fig. 56

Dati tecnici

	Tipo
	SC 160 SP
Lunghezza corsa utile max. [mm]	2500
Ripetibilità max.di posizionamento [mm]*1	± 0,05
Velocità max.di traslazione [m/s]	5,0
Accelerazione max. [m/s²]	50
Tipo di cinghia	70 AT 10
Tipo di puleggia	Z 25
Diametro primitivo della puleggia [mm]	79,58
Spostamento carro per giro puleggia [mm]	250
Peso del carro [kg]	32
Peso corsa zero [kg]	48
Peso per ogni 100 mm di corsa utile [kg]	1,9
Coppia a vuoto [Nm]	6,1

^{*1)} La ripetibilità di posizionamento dipende dal tipo di trasmissione applicato.

	[10 ⁷ mm ⁴]	[10 ⁷ mm ⁴]	[10 ⁷ mm ⁴]
SC 160	0,37	1,50	1,88
			Tab. 110


Momenti d'inerzia del profilo di alluminio

Cinghia di trazione

La cinghia di trazione viene realizzata in poliuretano resistente all'abrasione, con inserti in acciaio ad elevato carico di trazione.

Tipo	Tipo	Largh.	Peso
	cinghia	cinghia [mm]	kg/m
SC 160	70 AT 10	70	0,407

Lunghezza della cinghia (mm) = L + 121

SC 160 SP - Capacità di carico

Туре	F [I	: Nj	F [I	: vj]	F [l	: ^z N]	N [N	l _x m]	N [N	(_y m]		ا _ی m]
	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.	Stat.	Din.
SC 160 SP	5957	3864	86800	69600	86800	69600	6770	5429	17577	14094	17577	14094

Tab. 115

Vedere il capitolo "Carico statico e durata" a pag. SL-2 e SL-3.

Tab. 118

Lubrificazione

Unità lineari SP con guide a ricircolo di sfere

Nelle versioni SP vengono montate guide a ricircolo di sfere autolubrificanti. I carrelli a ricircolo di sfere delle versioni SP sono inoltre dotati di una gabbia di ritenuta, che elimina il contatto "acciaio-acciaio" tra corpi volventi adiacenti ed evita disallineamenti degli stessi nei circuiti. Sui frontali dei carrelli a ricircolo di sfere sono stati installati dei serbatoi di lubrificante che rilasciano la giusta quantità di grasso nelle

zone ove le sfere sopportano i carichi applicati. Questo sistema garantisce lunghi intervalli di manutenzione: per la versione SP ogni 5000 km o 1 anno d'uso in base al valore raggiunto per primo. In caso di elevate dinamiche del sistema e/o di elevati carichi applicati, contattare Rollon per le necessarie verifiche.

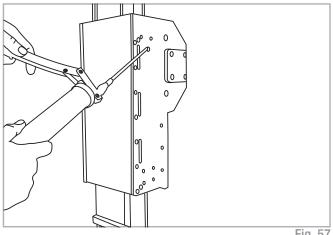


Fig. 57

- Inserire il beccuccio erogatore negli appositi ingrassatori.
- Tipo di lubrificante: grasso a base di sapone di litio della classe NLGI 2.
- Per applicazioni intense o difficili condizioni ambientali, è necessaria

Quantità necessaria di lubrificante per la rilubrificazione:

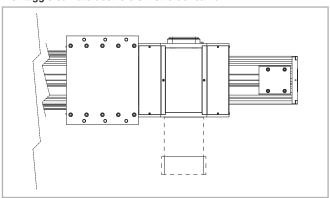
Tipo	Unità: [g]
SC 65	0,8
SC 130	0,8
SC 160	1,4

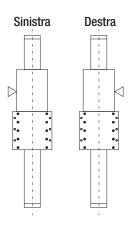
Tab. 119

una lubrificazione più frequente. Per maggiori informazioni rivolgersi a Rollon.

Riduttori epicicloidali

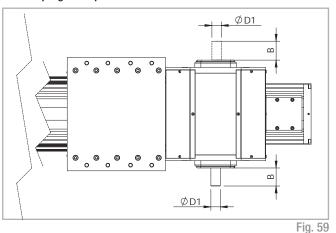
Montaggio sul lato destro o sinistro del carro




Fig. 58

Le unità lineari serie SC possono essere realizzate come standard con diversi tipi di trasmissione del moto:

- Riduttori epicicloidali
- Riduttori a vite senza fine
- Versioni con alberi sporgenti
- Versioni con alberi cavi


Versioni con riduttore epicicloidale

I riduttori epicicloidali vengono utilizzati per applicazioni di robotica, automazione e manipolazione che richiedono alta dinamica, cicli stressanti, con carichi e precisioni elevate. Sono disponibili modelli standard con gioco da 3' a 15' e con rapporto di riduzione da 1:3 a 1:1000. Per montaggi di riduttori epicicloidali fuori standard, contattare i nostri uffici per verifica.

Alberi sporgenti

Albero sporgente tipo AS

Unità	Tipo di albero	В	D1
SC 65	AS 20	40	20h7
SC 130	AS 25	50	25h7
SC 160	AS 25	50	25h7

Tab. 120

Posizione dell'albero sporgente destra o sinistra rispetto alla testata

motrice.

Unità	Tipo di albero	Codice testata AS a sinistra	Codice testata As a destra	Codice testata doppio AS	
SC 65	AS 20	1EA	1CA	1AA	
SC 130	AS 25	1EA	1CA	1AA	
SC 160	AS 25	1EA	1CA	1AA	

Tab. 121

Albero cavo

Albero cavo tipo AC

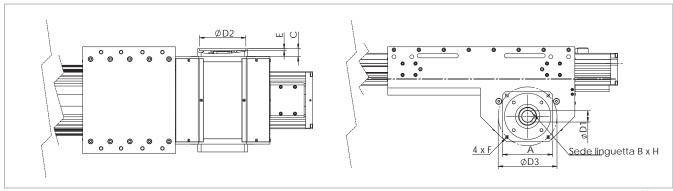
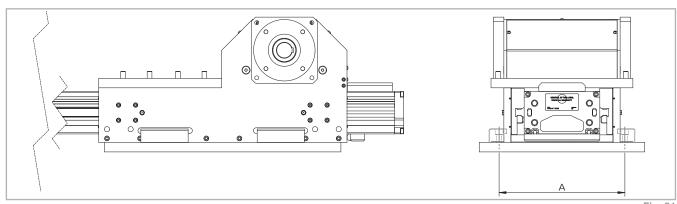


Fig. 60

Unità mm

Applicabile su unità	Tipo di albero	D1	D2	D3	А	В	E	F	Linguetta B x H	Codice testata
SC 65 SP	AC 19	19H7	80	100	90	13	3	M6	6 x 6	2AA
SC 65 SP	AC 20	20H7	80	100	90	13	3	M6	6 x 6	2BA
SC 130 SP	AC 20	20H7	80	100	115	19	4.5	M6	6 x 6	2AA
SC 130 SP	AC 25	25H7	110	130	115	19	4.5	M8	8 x 7	2BA
SC 160 SP	AC 32	32H7	130	165	140	22	5.5	M10	10 x 8	2AA

Tab. 122


Per il montaggio dei riduttori standard scelti da Rollon è prevista una flangia di connessione (opzionale).

Per ulteriori informazioni contattare i nostri uffici.

Accessori

Fissaggio con staffe

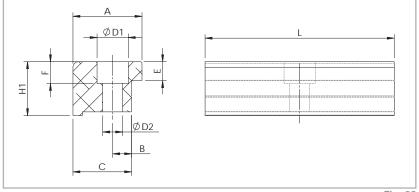

Le unità lineari Rollon serie SC possono essere montate in qualsiasi posizione grazie ai loro sistemi di traslazione con guide a ricircolo di sfere che consentono all'unità di sopportare carichi in qualsiasi direzione. Per il fissaggio delle unità lineari serie SC si consiglia di usare uno dei due sistemi sotto indicati:

Fig. 61

Staffa di fissaggio

Materiale: Alluminio anodizzato

Unità	А
SC 65 SP	147
SC 130 SP	213
SC 160 SP	266
	Tab. 123

Fig. 62

Unità	А	В	С	Е	F	D1	D2	H1	L	Codice
SC 65 SP	20	6	16	10	5,5	9,5	5,3	14	35	1001491
SC 130 SP	20	7	16	12,7	7	10,5	6,5	18,7	50	1001491
SC 160 SP	36,5	10	31	18,5	10,5	16,5	10,5	28,5	100	1001233

Tab. 124

Fissaggio diretto

PLS-48

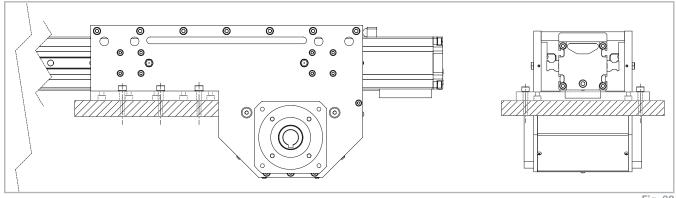
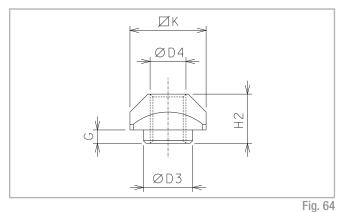



Fig. 63

Dadi a T

Dadi in acciaio da utilizzare nelle cave del profilo.

Fissaggio con dadi a T

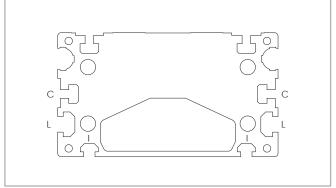


Fig. 65

Attenzione:

Non fissare le unità lineari tramite le testate alle estremità del profilo.

Unità	Slot	D3	D4	G	H2	К	Codice
SC 65	L	6,7	M5	2,3	6,5	10	1000627
SC 130	L-I	8	M6	3,3	8,3	13	1000043
SC 130	С	-	M3	-	4	6	1001097
SC 160	1	8	M6	3,3	8,3	13	1000043
SC 160	L	11	M8	2,8	10,8	17	1000932
SC 160	С	-	M6	-	5,8	13	1000910

L=Laterali / C=Centrali / I=Inferiori

Tab. 125

Proximity

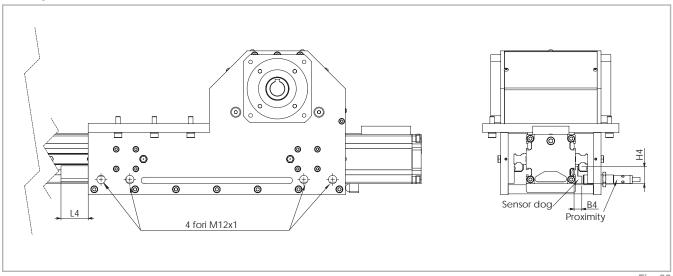


Fig. 66

Montaggio dei proximity

Le parti laterali del carro sono dotate di quattro fori filettati che sono predisposti per il montaggio dei proximities. Durante il montaggio è necessario che i proximities non vengano serrati troppo in profondità per evitare danneggiamenti causati dal pattino di lettura.

Sensor dog

Profilo a "L" in ferro zincato, montato nell'apposita cava del profilo ed utilizzato per la lettura da parte del proximity.

Unità	B4	H4	L4	Codice Sensor dog
SC 65	8.5	23	50	G000270
SC 130	8.4	25	50	G000271
SC 160	10	27	50	G000272

Protezioni

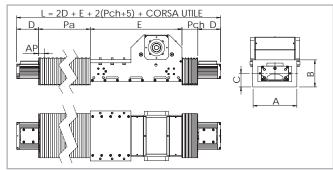


Fig. 67

Dimensioni (mm)

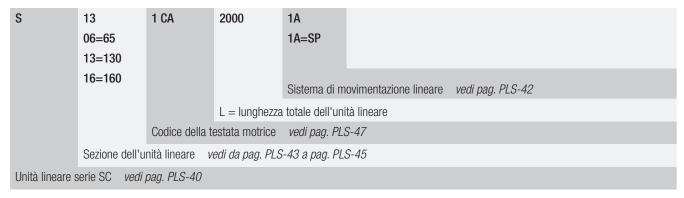
Unità	А	В	С	D	E
SC 65	135	109	54,5	100	340
SC 130	212	130	64	115	440
SC 160	248	150	73	120	525

Tab. 127

Protezione delle guide a ricircolo di sfere

I carrelli delle guide a ricircolo di sfere sono dotati di protezioni su entrambi i lati e, dove necessario, è possibile montare un ulteriore raschiatore per ambienti molto polverosi.

Protezioni speciali


Per l'utilizzo di unità lineari in ambienti particolarmente critici esiste la possibilità di corredare le unità lineari serie ROBOT di un soffietto in aggiunta alla protezione standard già esistente. Il soffietto viene fissato al carro e alle estremità dell'unità lineare tramite un nastro Velcro. Questo sistema rende più semplice il montaggio e lo smontaggio per eventuali sostituzioni.

La lunghezza totale delle unità lineari (L) varierà: Vedi fig. 67

Materiale standard: Nylon spalmato poliuretano termosaldato Materiali su richiesta: Nylon spalmato PVC, fibra di vetro, acciaio INOX Attenzione: L'utilizzo dei soffietti non permette il montaggio dei porta proximity nel profilo di alluminio.

Codice di ordinazione

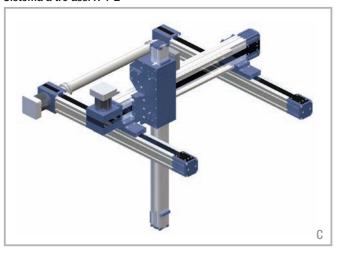
Codice di identificazione per l'unità lineare SC

Per creare i codici identificativi per i prodotti Actuator Line, è possibile visitare: http://configureactuator.rollon.com

Sistemi Multiassi

Sino ad oggi i produttori di macchine dovevano progettare, disegnare e realizzare tutti gli elementi necessari per il montaggio di due o più assi. Per agevolare il Cliente, Rollon ha studiato una serie di accessori, quali staffe e piastre a croce, che consentono la realizzazione di sistemi multi-

asse. Inoltre la serie SC è predisposta per una facile connessione diretta con le unità della serie ROBOT. Oltre agli elementi standard, Rollon può fornire piastre per applicazioni speciali.

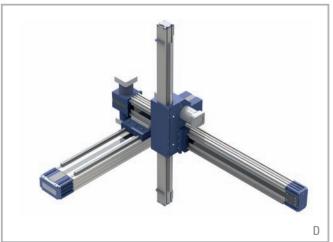

Esempi applicativi:

Sistema a due assi X-Z

A - Unità lineari: Asse X: 2 ELM 80 SP... Asse Y: 1 ROBOT 160 SP... Componenti di connessione: 2 kit di staffe per il fissagio dell'unità ROBOT 160 SP... sui carri delle ELM 80 SP...

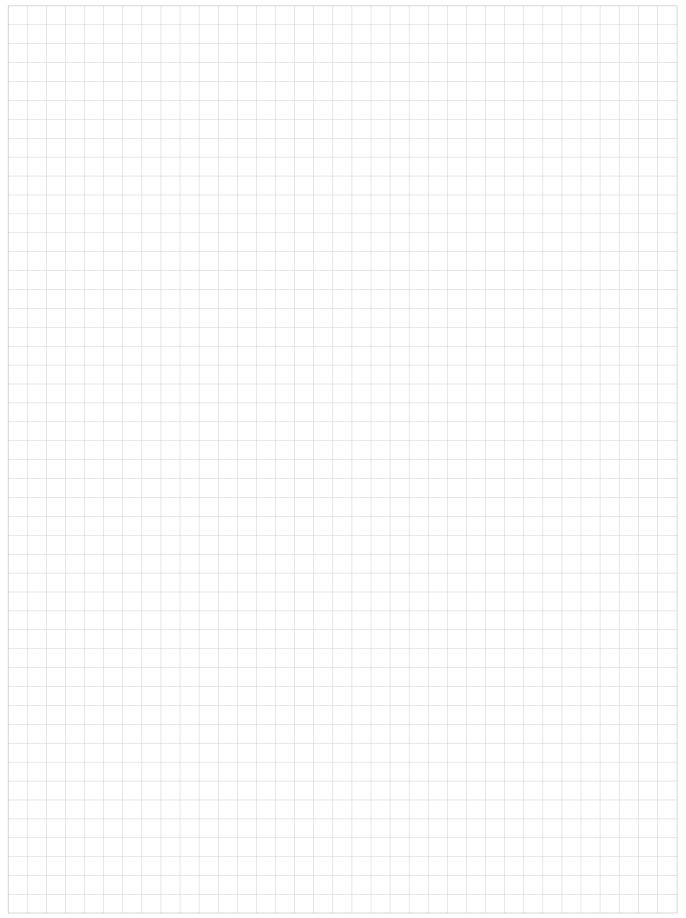
Sistema a tre assi X-Y-Z

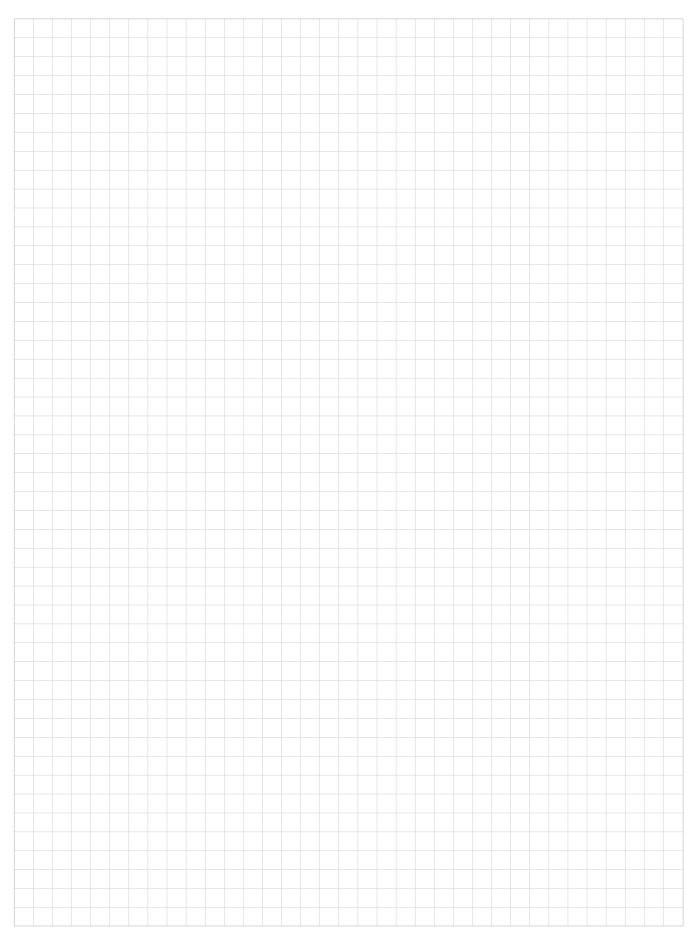
C - Unità lineari: Asse X: 2 ELM 65 SP... Asse Y: 1 ROBOT 130 SP... Asse Z: 1 SC 65


Componenti di connessione: 2 kit di staffe per il fissagio dell'unità ROBOT 130 SP... sui carri delle ELM 65 SP... L'unità SC 65 viene montata direttamente sull'unità ROBOT 130 SP... senza ulteriori elementi.

Sistema a due assi X-Z

B - Unità lineari: Asse X: 1 ROBOT 220 SP... Asse Z: 1 SC 160
 Componenti di connessione: Nessuno
 L'unità SC 160 viene montata direttamente sull'unità ROBOT 220
 SP... senza ulteriori elementi


Sistema a tre assi X-Y-Z


D - Unità lineari: Asse X: 1 ROBOT 220 SP... Asse Y: 1 ROBOT 130 SP... Asse Z: SC 65

Componenti di connessione: 1 kit di staffe per il fissagio dell'unità ROBOT 130 SP... sul carr dell'unità ROBOT 220 SP... L'unità SC 65 viene montata direttamente sull'unità ROBOT 130 SP... senza ulteriori elementi.

Note / ~

Carico statico e durata Plus-Clean Room-Smart-Eco-Precision

Carico statico

Per la verifica statica, la capacità di carico radiale F_{ν} , la capacità di carico assiale F_z e i momenti M_x , M_y e M_z indicano i valori di carico max. ammissibili. Carichi maggiori pregiudicherebbero le caratteristiche di scorrimento. Per la verifica del carico statico si impiega un fattore di sicurezza ${\bf S}_{\!_{0}}$ che tiene conto dei parametri dell'applicazione ed è definito più dettagliatamente nella seguente tabella:

Fattore di sicurezza S_n

Assenza di urti e vibrazioni, frequenze di inversione modeste e poco frequenti, elevata precisione di montaggio, nessuna deformazione elastica	2 - 3
Condizioni di montaggio normali	3 - 5
Urti e vibrazioni, frequenze di inversione molto frequenti, deformazioni elastiche evidenti	5 - 7

Fig. 1

Il rapporto tra il massimo carico ammissibile e quello effettivo deve essere almeno uguale al reciproco del fattore di sicurezza S_o adottato.

$$\frac{P_{fy}}{F_{v}} \leq \frac{1}{S_{0}} \qquad \frac{P_{fz}}{F_{z}} \leq \frac{1}{S_{0}}$$

$$\frac{P_{fz}}{F_z} \le \frac{1}{S_0}$$

$$\frac{M_1}{M_x} \le \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \le \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 2

Le formule riportate sopra valgono per una singola condizione di carico. Se agiscono contemporaneamente due o più forze descritte, eseguire la seguente verifica:

$$\frac{P_{fy}}{F_{y}} + \frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}} \le \frac{1}{S_{0}}$$

= carico applicato (Direzione y) (N)

= Carico statico (Direzione y) (N)

= Carico applicato (Direzione z) (N)

= Carico statico (Direzione z) (N)

 $M_1, M_2, M_3 = momenti esterni (Nm)$

 M_{v} , M_{v} , M_{v} = momenti massimi ammissibili nelle diverse direzioni di carico (Nm)

Il fattore di sicurezza S_o può essere prossimo alla soglia inferiore indicata se è possibile determinare con sufficiente esattezza le forze in azione. Se il sistema è soggetto a urti e vibrazioni, scegliere il valore più alto. Per le applicazioni dinamiche sono necessari dei fattori di sicurezza più elevati. Per ulteriori informazioni contattare il nostro servizio tecnico.

Fattore di sicirezza della cinghia riferito a ${\sf F_{x}}$

Impatti e vibrazioni	Velocità / accellerazione	Orientamento	Fattore di sicurezza
Nessun impatto	Bassa	orizzontale	1.4
e/o vibrazioni	Dassa	verticale	1.8
Impatti e/o	Media	orizzontale	1.7
ibrazioni leggere	IVICUIA	verticale	2.2
Impatti e/o	Alta	orizzontale	2.2
vibrazioni forti	Alld	verticale	3

Tab. 1

Fig. 3

Durata

Calcolo della durata

Il coefficiente di carico dinamico C è una misura convenzionale utilizzata per calcolare la durata. Questo carico corrisponde a una durata nominale

di 100 km. Il rapporto tra la durata calcolata, il coefficiente di carico dinamico e il carico equivalente è definito dalla formula seguente:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$E_{km} = \text{durata teorica (km)}$$

$$E_{z-dyn} = \text{coefficiente di carico dinamico (N)}$$

$$E_{eq} = \text{carico applicato equivalente (N)}$$

$$E_{eq} = \text{coefficiente di impiego (vedi tab. 2)}$$

Fig. 4

Il carico equivalente P corrisponde negli effetti alla somma dei momenti e delle forze in azione contemporaneamente su un cursore. Se le diverse componenti di carico sono note, P si ricava nel modo seguente:

Per SP

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_{_1}}{M_{_X}} + \frac{M_{_2}}{M_{_y}} + \frac{M_{_3}}{M_{_z}}) \cdot F_{_y}$$

Fig. 5

Per CI e CE

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 6

Si considera che i carichi esterni siano costanti nel tempo. Carichi temporanei che non superano la capacità massima di carico non hanno alcun effetto rilevante sulla durata e possono essere quindi trascurati.

Coefficiente di impiego f

f_i	
Assenza di urti e vibrazioni, frequenze di inversione modeste e poco frequenti, condizioni ambientali pulite, basse velocità (<1 m/s)	1,5 - 2
Leggere vibrazioni, velocità medie (1-2,5 m/s) e frequenze media di inversione	2 - 3
Urti e vibrazioni, velocità elevate (>2,5 m/s) e frequenze di inversione molto frequenti, molta sporcizia	> 3

Carico statico e durata Uniline

Carico statico

Per la verifica statica, la capacità di carico radiale C_{Orad} , la capacità di carico assiale C_{Oax} e i momenti M_{x} , M_{y} e M_{z} indicano i valori di carico max. ammissibili. Carichi maggiori pregiudicherebbero le caratteristiche di scorrimento. Per la verifica del carico statico si impiega un fattore di sicurezza S_{o} che tiene conto dei parametri dell'applicazione ed è definito più dettagliatamente nella seguente tabella:

Fattore di sicurezza S

Assenza di urti e vibrazioni, frequenze di inversione modeste e poco frequenti, elevata precisione di montaggio, nessuna deformazione elastica	1 - 1.5
Condizioni di montaggio normali	1.5 - 2
Urti e vibrazioni, frequenze di inversione molto frequenti, deformazioni elastiche evidenti	2 - 3.5

Fig. 7

Il rapporto tra il massimo carico ammissibile e quello effettivo deve essere almeno uguale al reciproco del fattore di sicurezza S_0 adottato.

$$\frac{P_{\text{0rad}}}{C_{\text{orad}}} \le \frac{1}{S_0}$$

$$\frac{P_{0ax}}{C_{0ax}} \le \frac{1}{S_0}$$

$$\frac{M_1}{M_x} \leq \frac{1}{S_0}$$

$$\frac{M_2}{M_y} \ \leq \ \frac{1}{S_0}$$

$$\frac{M_3}{M_z} \le \frac{1}{S_0}$$

Fig. 8

Le formule riportate sopra valgono per una singola condizione di carico. Se agiscono contemporaneamente due o più forze descritte, eseguire la seguente verifica:

$$\frac{P_{0rad}}{C_{0rad}} + \frac{P_{0ax}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{7}} \leq \frac{1}{S_{0}}$$

P_{orad} = carico radiale applicato (N)

 C_{Orad} = carico radiale ammissibile (N)

 P_{cov} = carico assiale applicato (N)

 C_{nay} = carico assiale ammissibile (N)

 M_1 , M_2 , M_3 = momenti esterni (Nm)

 M_{y} , M_{y} , M_{z} = momenti massimi ammissibili

nelle diverse direzioni di carico (Nm)

Il fattore di sicurezza S_0 può essere prossimo alla soglia inferiore indicata se è possibile determinare con sufficiente esattezza le forze in azione. Se il sistema è soggetto a urti e vibrazioni, scegliere il valore più alto. Per le applicazioni dinamiche sono necessari dei fattori di sicurezza più elevati. Per ulteriori informazioni contattare il nostro servizio tecnico.

Fig. 9

Formule per il calcolo

Momenti $M_{_{\rm V}}$ e $M_{_{\rm Z}}$ per unità lineari con cursore lungo

I carichi ammissibili per i momenti M_y e M_z dipendono dalla lunghezza del cursore. I momenti ammissibili M_{zn} e M_{yn} per le varie lunghezze del cursore vengono calcolati in base alla seguente formula:

$$S_n = S_{min} + n \cdot \Delta S$$

$$M_{zn} = (1 + \frac{S_n - S_{min}}{K}) \cdot M_{z min}$$

$$\mathrm{M_{yn}} = (\ 1 + \frac{\mathrm{S_n} \cdot \mathrm{S_{min}}}{\mathrm{K}}\) \cdot \mathrm{M_{y\,min}}$$

 M_{zn} = momento ammissibile (Nm)

 $M_{z min} = valori minimi (Nm)$

 M_{vn} = momento ammissibile (Nm)

 $M_{y \min} = valori minimi (Nm)$

S_n = lunghezza del cursore (mm)

 S_{\min} = lunghezza minima del cursore (mm)

 ΔS = coefficiente del cambio di lunghezza del cursore

K = costante

Fig. 10

Tipo	M _{y min}	M _{z min}	S _{min}	ΔS	К
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270

Momenti $\rm M_{v}$ e $\rm M_{z}$ per unità lineari con cursore doppio

I carichi ammissibili per i momenti M_y e M_z dipendono dal valore per l'interasse cursori. I momenti ammissibili M_{yn} e M_{zn} per l'interasse cursori presente vengono calcolati in base alla seguente formula:

$$L_n = L_{min} + n \cdot \Delta L$$

$$M_{y} = (\frac{L_{n}}{L_{min}}) \cdot M_{y \, min}$$

$$M_z = (\frac{L_n}{L_{min}}) \cdot M_{z \, min}$$

M_v = momento ammissibile (Nm)

M_z = momento ammissibile (Nm)

 $M_{v min} = valori minimi (Nm)$

M_{z min} = valori minimi (Nm)

L_n = interasse cursori (mm)

 L_{min} = valore minimo per l'interasse cursori (mm)

 ΔL = coefficiente del cambio di lunghezza del cursore

Fig. 11

Tipo	M _{y min}	M _{z min}	L _{min}	ΔL
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
A100D	2851	4950	396	50
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8

Tab. 4

Durata

Calcolo della durata

Il coefficiente di carico dinamico C è una misura convenzionale utilizzata per calcolare la durata. Questo carico corrisponde a una durata nominale di 100 km. I valori per le varie unità lineari sono riportate nella tabella

45 sottostante. Il rapporto tra la durata calcolata, il coefficiente di carico dinamico e il carico equivalente è definito dalla formula seguente:

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$$

L_{km} = durata teorica (km)

C = coefficiente di carico dinamico (N)

P = carico applicato equivalente (N)

f_c = coefficiente di contatto (vedi tab. 5)

f_i = coefficiente di impiego (vedi tab. 6)

f_b = coefficiente di corsa (vedi fig.13)

Fig. 12

Il carico equivalente P corrisponde negli effetti alla somma dei momenti e delle forze in azione contemporaneamente su un cursore. Se le diverse componenti di carico sono note, P si ricava nel modo seguente:

$$P = P_{r} + (\frac{P_{a}}{C_{0ax}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot C_{0rad}$$

Fig. 13

Si considera che i carichi esterni siano costanti nel tempo. Carichi temporanei che non superano la capacità massima di carico non hanno alcun effetto rilevante sulla durata e possono essere quindi trascurati.

Coefficiente di impiego f_i

f_i	
Assenza di urti e vibrazioni, frequenze di inversione modeste e poco frequenti, condizioni ambientali pulite, basse velocità (<1 m/s)	1 - 1,5
Leggere vibrazioni, velocità medie (1-2,5 m/s) e frequenze media di inversione	1,5 - 2
Urti e vibrazioni, velocità elevate (>2,5 m/s) e frequenze di inversione molto frequenti, molta sporcizia	2 - 3,5

Tab. 5

Coefficiente di contatto f

f _c	
Cursore standard	1
Cursore lungo	0.8
Cursore doppio	0.8

Tab. 6

Coefficiente di corsa f,

Il coefficiente di corsa f_h tiene conto del maggiore carico su piste e perni volventi per le corse brevi, a parità di percorso totale. Dal diagramma seguente si possono ricavare i corrispondenti valori (per corse maggiori di 1 m rimane $f_h=1$):

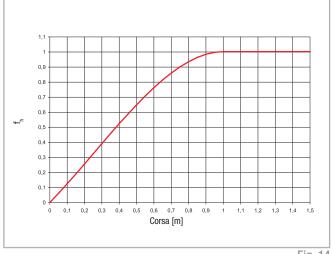
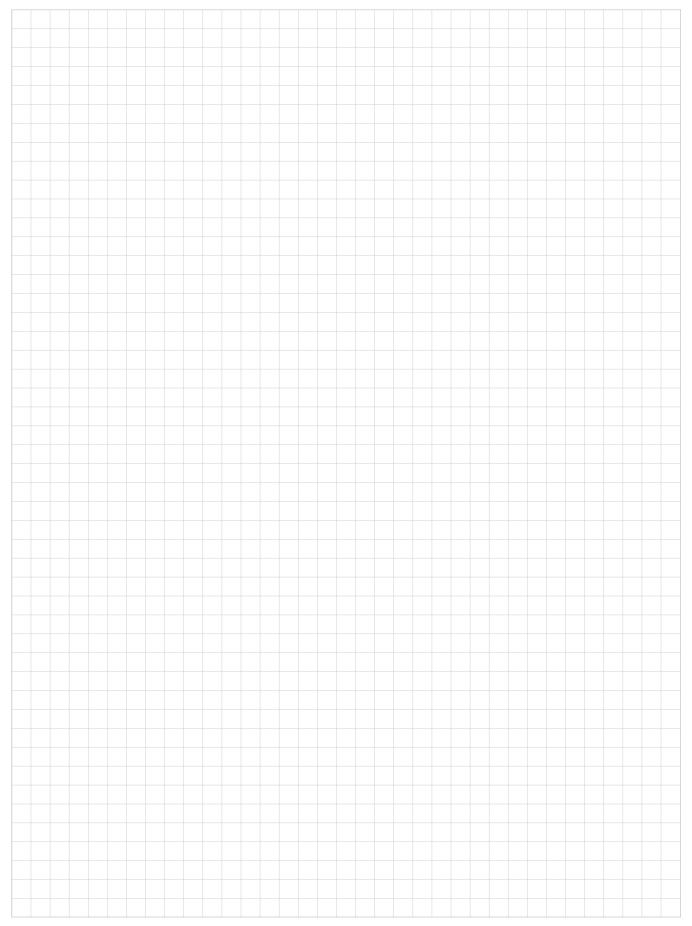


Fig. 14

Determinazione della coppia motrice

La coppia C_m necessaria nella testa motrice dell'asse lineare viene calcolata mediante la seguente formula:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$

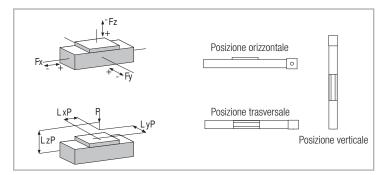

 C_m = coppia motrice (Nm)

C_v = coppia a vuoto standard (Nm)

= forza applicata sulla cinghia (N)

= diametro primitivo della puleggia (m)

Note / ~



Scheda dati /

Dati generali:	Data: Richiesta N°:
Indirizzo:	Interlecutore:
Società:	Cap/Città:
Tel:	Fax:

Dati tecnici:

				X axis	Y axis	Z axis
Corsa utile (Comprese extra corse di sicurezza)		S	[mm]			
Peso da traslare		Р	[kg]			
Posizione del baricentro del peso	Direzione X	LxP	[mm]			
	Direzione Y	LyP	[mm]			
	Direzione Z	LzP	[mm]			
Forze supplementari	Direzione (+/-)	Fx (Fy, Fz)	[N]			
Posizione delle forze	Direzione X	Lx Fx (Fy, Fz)	[mm]			
	Direzione Y	Ly Fx (Fy, Fz)	[mm]			
	Direzione Z	Lz Fx (Fy, Fz)	[mm]			
Posizione di montaggio (Orizzontale/verticale/trasversale)						
Velocità max.		V	[m/s]			
Accelerazione max.			[m/s ²]			
Precisione di posizionamento		Δs	[mm]			
Durata richiesta		L	[ore]			

ATTENZIONE: Si prega di inserire disegni, schizzi e scheda del ciclo di lavoro

Filiali:

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.A.R.L. - FRANCE

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest

Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON Ltd - CHINA

2/F Central Plaza, No. 227 North Huang Pi Road, China, Shanghai, 200003 Phone: (+86) 021 2316 5336

www.rollon.cn.com - info@rollon.cn.com

ROLLON B.V. - NETHERLANDS

Ringbaan Zuid 8 6905 DB Zevenaar Phone: (+31) 316 581 999 www.rollon.nl - info@rollon.nl

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rolloncorp.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. - INDIA

1st floor, Regus Gem Business Centre, 26/1 Hosur Road, Bommanahalli, Bangalore 560068 Phone: (+91) 80 67027066 www.rollonindia.in - info@rollonindia.in

Rep. Offices:

117105, Moscow, Varshavskoye shosse 17, building 1, office 207. Phone: +7 (495) 508-10-70 www.rollon.ru - info@rollon.ru

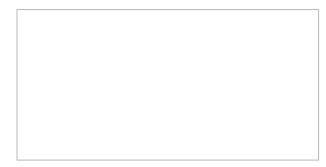
ROLLON Ltd - UK

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR Phone: +44 (0) 1234964024 www.rollon.uk.com - info@rollon.uk.com

Regional Manager:

ROLLON - SOUTH AMERICA

R. Joaquim Floriano, 397, 2o. andar Itaim Bibi - 04534-011, São Paulo, BRASIL Phone: +55 (11) 3198 3645


www.rollonbrasil.com.br - info@rollonbrasil.com

Consultate le altre linee di prodotto

Distributore

Tutti gli indirizzi dei nostri partners nel mondo possono essere consultati sul sito internet www.rollon.com